학생들의 분수 나눗셈에 대한 이해는 개념적 이해를 바탕으로 수행되어야 함에도 불구하고 분수 나눗셈은 많은 학생들이 기계적인 절차적 지식으로 획득할 가능성이 높은 내용이다. 이것은 학생들이 학교에서 분수 나눗셈을 학습할 때에 일상생활에서의 경험과 선행 학습과의 연결이 잘 이루어지지 못하고 있는 것에 큰 원인이 있다고 본다. 본 연구에서는 학생들의 분수 나눗셈의 개념적 이해를 돕기 위하여 경험적 지식과의 연결 관계를 활용한 교수 방안을 실험 교수를 통해 조사하였다. 결과로서 번분수를 활용한 수업은 분수 나눗셈의 표준 알고리즘이 수행되는 이유를 알 수 있게 하는데 도움이 되나 여러 가지 절차적 지식이 뒷받침되어야 하며 분수 막대를 직접 잘라 보는 활동을 통한 수업은 분수 나눗셈에서의 나머지를 이해하는데 효과가 있다는 것을 알았다. 결론적으로, 학생들의 경험과 학교에서 이미 학습한 분수 나눗셈들의 관련 지식들을 적절히 연결하도록 한다면 수학적 연결을 통해 분수 나눗셈의 개념적 이해를 이끌 수 있다.
The purpose of the study was to investigate how children understand addition and subtraction of fractions and how their understanding influences the solutions of fractional word problems. Twenty students from 4th to 6th grades were involved in the study. Children's understanding of operations with fractions was categorized into "joining", "combine" and "computational procedures (of fraction addition)" for additions, "taking away", "comparison" and "computational procedures (of fraction subtraction)" for subtractions. Most children understood additions as combining two distinct sets and subtractions as removing a subset from a given set. In addition, whether fractions had common denominators or not did not affect how they interpret operations with fractions. Some children understood the meanings for addition and subtraction of fractions as computational procedures of each operation without associating these operations with the particular situations (e.g. joining, taking away). More children understood addition and subtraction of fractions as a computational procedure when two fractions had different denominators. In case of addition, children's semantic structure of fractional addition did not influence how they solve the word problems. Furthermore, we could not find any common features among children with the same understanding of fractional addition while solving the fractional word problems. In case of subtraction, on the other hand, most children revealed a tendency to solve the word problems based on their semantic structure of the fractional subtraction. Children with the same understanding of fractional subtraction showed some commonalities while solving word problems in comparison to solving word problems involving addition of fractions. Particularly, some children who understood the meaning for addition and subtraction of fractions as computational procedures of each operation could not successfully solve the word problems with fractions compared to other children.
학생들이 분수 개념을 이해하기 위하여 분수 개념에 대한 표상과 현행 교과서에 기술되고 있는 분수 개념에 대한 실제를 살펴보았다. 그리고 5학년 남학생 3명과 여학생 3명을 대상으로 동치분수의 개념과 모델링이 동치분수를 이해하는데 어떤 역할을 하는지를 살펴보고자 하는 것이 본 연구의 목적이다.
Based on the current curriculum, students learn the concept of fraction in the 3rd grade for the first time. At that time, fraction is introduced as whole-part relationship. But as the idea of fraction expands to improper fraction and so on, fraction as measurement would be naturally appeared. In that situation where fraction as whole-part relationship and fraction as measurement are dealt together, it is necessary for students to get experiences of understanding and exploring unit and whole adequately in order to fully understand the concept of fractions. Therefore, the purpose of this study is to analyze how to deal with unit fractions, how to implement activities to find the standard of reference from the part, and what visual representations were used to help students to understand the concept of fractions in elementary mathematics textbooks from the 7th to the 2015 revised curriculum. And we analyzed 60 3rd graders' understanding of finding and drawing the whole by looking at the part. Several didactical implications for teaching the concept of fractions were derived from the discussion according to the analysis results.
A goal of this study is figuring out how fraction learning centered on various representation activities influences the fraction comprehension and mathematical attitudes. The study focused on 33 4th-grade students of B elementary school in Seoul. In the study, 15 fraction learning classes comprising enactive, iconic, and symbolic representations took place over 6 weeks. After the classes, the ratio of the students who achieved relational understanding increased and the students averagely recorded 90 pt or more on the fraction comprehension test I, II and III. Two-dependent samples t-test was conducted to analyze a significant difference in mathematical attitudes between pre-test and post-test. On the test result, there was the meaningful difference with 0.01 level of significance. To conclude, the fraction learning centered on various representation activities improves students' relational understanding and fraction understanding. In addition, the fraction learning centered on various representation activities gives positive influences on mathematical attitudes since it increases learning orientation, self-control, interests, value cognition, and self-confidence of the students and decreases fears of the students.
With the importance of number line in learning fractions, this study investigated how 4th grade students understand fractions and its operations in number line. The questionnaire consisted 22 items which were related to representing fractions, comparing the size of fractions, and operating addition and subtraction of fractions. Both structured number line and sub-structured number line were presented in the items. As results of the study, the overall success rates were not high and even some items showed higher incorrect answer rates than the success rates. Also, the students showed a difficulty in solving non-structured number line tasks. It was also noticeable that students showed several types of incorrect answers, which means that students had incomplete understanding of both fractions and number line. This paper is expected to shed light on elementary students' understanding of fractions and number line and to provide implications of how to deal with number line in teaching and learning fractions in the elementary school.
A fraction is one of the most important concepts that students have to learn in elementary school. But it is a challenge for students to understand fraction concept because of its conceptual complexity. The focus of fraction learning is understanding the concept. Then the problem is how we can facilitate the conceptual understanding and estimate it. In this study, Moore's concept understanding scheme(concept definition, concept image, concept usage) was adopted as an theoretical framework to investigate students' fraction understanding. The questions of this study were a) what concept image do students have\ulcorner b) How well do students solve fraction problems\ulcorner c) How do students use fraction concept to generate fraction word problem\ulcorner By analyzing the data gathered from three elementary school, several conclusion was drawn. 1) The students' concept image of fraction is restricted to part-whole sub-construct. So is students' fraction understanding. 2) Students can solve part-whole fraction problems well but others less. This also imply that students' fraction understanding is partial. 3) Half of the subject(N=98) cannot pose problems that involve fraction and fraction operation. And some succeeded applied the concept mistakenly. To understand fraction, various fraction subconstructs have to be integrated as whole one. To facilitate this integration, fraction program should focus on unit, partitioning and quantity. This may be achieved by following activities: * Building on informal knowledge of fraction * Focusing on meaning other than symbol * Various partitioning activities * Facing various representation * Emphasizing quantitative aspects of fraction * Understanding the meanings of fraction operation Through these activities, teacher must help students construct various faction concept image and apply it to meaningful situation. Especially, to help students to construct various concept image and to use fraction meaningfully to pose problems, much time should be spent to problem posing using fraction.
The purpose of this study is to explore how units-coordination ability is related to understanding fraction concepts. For this purpose, a teaching experiment was conducted with one fourth grade student, Eunseo for four months(2019.3. ~ 2019.6.). We analyzed in details how Eunseo's units-coordinating operations related to her understanding of fraction changed during the teaching experiment. At an early stage, Eunseo with a partitive fraction scheme recognized fractions as another kind of natural numbers by manipulating fractions within a two-levels-of-units structure. As she simultaneously recognized proper fraction and a referent whole unit as a multiple of the unit fraction, she became to distinguish fractions from natural numbers in manipulating proper fractions. Eunseo with a reversible partitive fraction scheme constructed a natural number greater than 1, as having an interiorized three-levels-of-units structure and established an improper fraction with three levels of units in activity. Based on the results of this study, conclusions and pedagogical implications were presented.
The purpose of the study is to analyze the sixth graders' understanding of concepts and operation about fraction. The test was administered and analyzed to 707 sixth graders' performance on fractions after the fraction instructions in elementary schools in Seoul, Korea. The participants are asked to answer two sets of questions for 40 minutes. First, they are asked to answer to 16 problems about the concepts of fraction with respect to part-whole, ratio, operator, measure, quotient, equivalent, and operations. Second, specially, to investigate sixth graders' ability of drawing and describing the situation of division including fraction, the descriptive problem asked students (1) to describe $3\;{\div}\;\frac{1}{2}$ into pictorial representation and (2) to write the solving process. The participants of this study didn't show deep understandings about the concepts and operation of fraction. The degree of understanding of subconstructs of fraction shows that their knowledge of ratio concept with respect to fraction was highest while their understanding of measure with respect to fraction was lowest. Considering their wrong answers, about 59% of participants showed misconception to the question of naming one fraction that appears between $\frac{1}{5}$ and $\frac{1}{6}$. Further, they didn't explain their understanding with drawing about the division of fraction ($3\;{\div}\;\frac{1}{2}$).
The purpose of the study was to investigate the effects of the use of RNP curriculum based on Lesh translation model on third grade students' understandings of fraction concepts and problem solving ability. Students' conceptual understandings of fractions and problem solving ability were improved by the use of the curriculum. Various manipulative experiences and translation processes between and among representations facilitated students' conceptual understandings of fractions and contributed to the development of problem solving strategies. Expecially, in problem situations including fraction ordering which was not covered during the study, mental images of fractions constructed by the experiences with manipulatives played a central role as a problem solving strategy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.