최근 IT 분야에서 인터넷을 기반으로 IT 자원들을 서비스 형태로 제공하는 클라우드 컴퓨팅에 대한 관심이 증대되고 있으며, 이에 따라 대규모 데이터를 수많은 서버들에 분산 저장하고 관리하기 위한 분산 데이터 처리 기법에 대한 연구가 활발히 진행되고 있다. 한편 GIS 기술의 성장과 더불어 급격히 증가하고 있는 공간 데이터를 효율적으로 활용하기 위해서는, 클라우드 컴퓨팅을 이용한 대용량 공간데이터의 분산 처리가 필수적이다. 이를 위해 본 논문에서는 대표적인 분산 데이터 처리 기법에 대해 살펴보고, 분산 데이터 처리 기법 성능 개선을 위한 최적화 요구사항을 분석한다. 마지막으로 Hadoop 기반 클러스터를 구축하고 이를 통해서 분산 데이터 처리 기법의 성능 최적화에 대한 성능평가를 수행한다.
최근 IT 분야에서 인터넷을 기반으로 IT 자원들을 서비스 형태로 제공하는 클라우드 컴퓨팅에 대한 연구가 활발히 진행되고 있다. 한편, 효율적인 클라우드 컴퓨팅을 제공하기 위해서는, 막대한 양의 데이터를 수많은 서버들에 분산 처장하고 관리하기 위한 분산 데이터 처장 기법 빛 분산 병렬 처리 기법에 대한 연구가 필수적이다. 이를 위해 본 논문에서는 대표적인 분산 병렬 처리 기법에 대해 살펴보고, 이를 비교 분석한다. 마지막으로 Hadoop 기반 클러스터를 구축하고 이를 통해서 대규모 데이터를 위한 분산 병렬 처리 기법에 대한 성능평가를 수행한다.
데이터의 효과적인 활용이 경쟁력 확보에 주요한 요인이나, 데이터 폭증은 유용한 정보를 얻는데 필요한 처리 시간의 지연을 야기하고 있다. 개인 맞춤형 서비스, 방범 방재 서비스 등 모니터링 & 대응 서비스를 위해 분석할 데이터의 양이 급증하고 있으며, 텍스트, 영상, 오디오 등 비정형 데이터에 대한 실시간 분석 필요성이 증대하고 있다. 대량의 폭증하는 데이터에 대한 실시간 분석 처리 환경을 제공하기 위해 분산 병렬 컴퓨팅 기술과 데이터 스트림 연속 처리 기술이 활용되고 있다. 본고에서는 폭증하는 데이터 스트림 처리를 위하여 확장성 및 유연한 처리 환경을 제공하는 분산 스트림 컴퓨팅 기술에 대해 소개한다.
4차 산업혁명의 기술 등장 이후 대규모 데이터 시대에서 새로운 가치 창출을 위한 데이터 정보 분석은 다양한 분야에서 시도되고 있다. 대용량 데이터를 빠르게 처리하는데 있어서 분산 데이터 처리는 이미 필수적이다. 하지만 아직 국방 분야에서 운용하고 있는 시뮬레이션들은 쌓여 있는 비정형 데이터를 활용할 수 있는 시스템이 미비하다. 이에 본 연구에서는 훈련간 발생하는 문제에 대응하기 위한 지휘결심에 가시화된 데이터를 제공하기 위해서 대대급 규모의 시뮬레이션 모델에 적용 가능한 분산 처리 플랫폼을 제안한다. 전략게임 데이터 50만개를 분석하는 과정으로, 데이터가 가지고 있는 여러 요인들 중 승리요인에 영향을 미치는 요소들을 분석할 수 있게 구현하였다. 결과적으로 상위 10%에 있는 팀들의 데이터를 분석하는 과정에서의 분산처리 사용한 결과를 측정 및 비교 하였다.
대규모 데이터 센터는 클라우드 컴퓨팅을 가능하게 하고, 빅데이터 처리를 위해 널리 쓰이는 HDFS 혹은 MapReduce, Dryad와 같은 프레임워크는 분산 처리 환경에서 운영하는 것을 기반으로 설계되어 있어 일대일이 아닌 다대일 통신이 빈번히 발생한다. TCP Incast 문제는 다대일 통신에서 발생하는 문제로 단일 상위 서버에서 다수의 하위 서버로 일을 요청할 때, 요청된 결과가 단일 상위 서버로 동시에 응답할 때 발생한다. 기존의 분산 처리 환경에서는 작은 데이터를 처리하기 때문에 단일 상위 서버에서의 데이터 처리 부담이 적었다. 하지만 빅데이터를 처리하는 분산 처리 환경에서는 블록 단위의 큰 데이터를 처리하므로 데이터 처리 시간에 민감한 메시지 데이터에서 지연이 발생할 수 있다. 본 논문에서는 급격한 처리량 붕괴를 일으킬 수 있는 TCP Incast 문제 완화 알고리즘에 대하여 기술한다.
실시간으로 발생되는 대량의 데이터를 효율적으로 저장하기 위한 연구는 분산/병렬 처리를 위한 하둡 및 NoSQL과 관련한 빅 데이터 처리 기술을 통해 진행 중에 있다. 하지만 시맨틱 웹 분야에서 발생되는 대량의 데이터를 처리하기 위한 모델은 현재 연구가 진행되고 있지 않다. 본 논문에서는 시맨틱 웹 환경에서 발생되는 대량의 온톨로지 데이터를 빅 데이터 처리가 가능한 NoSQL 분야인 HBase 데이터베이스에 분산 저장할 수 있는 매핑 규칙을 제안한다. 이와 같은 매핑 규칙을 통해 시맨틱 웹 환경에서도 대량으로 발생될 수 있는 데이터들을 효율적으로 분산 저장 할 수 있다.
클라우드 컴퓨팅이 활성화 됨에 따라 기존의 파일 시스템과는 다른 대용량 파일 처리에 효율적인 분산파일시스템의 요구가 대두 되었다. 그 중에 하둡 분산 파일 시스템(Hadoop Distribute File System, HDFS)은 기존의 분산파일 시스템과는 달리 가용성과 내고장성을 보장하고, 데이터 접근 패턴을 스트리밍 방식으로 지원하여 대용량 파일을 효율적으로 저장할 수 있다. 이러한 장점 때문에, 클라우드 컴퓨팅의 파일시스템으로 대부분 채택하고 있다. 하지만 실제 HDFS 데이터 집합에서 대용량 파일 보다 소용량 파일이 차지하는 비율이 높으며, 이러한 다수의 소 용량 파일은 데이터 처리에 있어 높은 처리비용을 초래 할 뿐 만 아니라 메모리 성능에 악영향을 끼친다. 하지만 소 용량 파일을 프리패칭 함으로서 이러한 문제점을 해결 할 수 있다. HDFS의 데이터 프리페칭은 기존의 데이터 프리페칭의 기법으로는 적용하기 어려워 HDFS를 위한 데이터 프리패칭 기법을 제안한다.
네트워크로 연결된 컴퓨터 기술은 컴퓨터의 향상된 처리 능력과 컴퓨터 통신기술과 결합하여 자원을 보다 유용하게 이용하는 분산처리 기법이 발단하게 되었다. 이러한 분산 시스템은 단일 컴퓨터 시스템에서 시스템에 미치는 영향을 적게 함으로서 신뢰도를 높일 수 있고 저렴한 비용으로 더 큰 성능을 얻을 수 있다. 본 연구에서는 실시간으로 생성되는 패킷 데이터를 효율적으로 처리하고 분석하는데 있어서 분산 시스템을 이용하여 해결 하고자 한다. 사용자 행동으로부터 생성되는 패킷을 IP별로 분리하여 각각의 분산된 시스템에서 처리하고 이렇게 처리된 데이터를 관리자가 모니터링 할 수 있도록 부하균형을 이룬 패킷 마이닝 분산 시스템을 제안하고자 한다.
최근 TV 서비스의 가입자 및 TV 프로그램 콘텐츠의 급격한 증가에 따라 빅데이터 처리에 적합한 추천 시스템의 필요성이 증가하고 있다. 본 논문은 사용자들의 간접 평가 데이터 기반의 추천 시스템 디자인 시, 누적된 사용자의 과거 이용내역 데이터를 저장하지 않고 새로 생성된 사용자 이용내역 데이터를 학습하는 효율적인 알고리즘이면서, 시간 흐름에 따라 사용자들의 선호도 변화 및 TV 프로그램 스케줄 변화의 추적이 가능한 토픽 모델링 기반의 알고리즘을 제안한다. 빅데이터 처리를 위해서는 분산처리 형태의 알고리즘을 피할 수 없는데, 기존의 연구들 중 토픽 모델링 기반의 추론 알고리즘의 병렬분산처리 과정 중에 핵심이 되는 부분은 많은 데이터를 여러 대의 기계에 나누어 병렬분산 학습하면서 전역변수 데이터를 동기화하는 부분이다. 그런데, 이러한 전역데이터 동기화 기술에 있어, 여러 대의 컴퓨터를 병렬분산처리하기위한 하둡 기반의 시스템 및 서버-클라이언트간의 중재, 고장 감내 시스템 등을 모두 고려한 알고리즘들이 제안되어 왔으나, 네트워크 대역폭 한계로 인해 데이터 증가에 따른 동기화 시간 지연은 피할 수 없는 부분이다. 이에, 본 논문에서는 빅데이터 처리를 위해 사용자들을 클러스터링하고, 클러스터별 제안 알고리즘으로 전역데이터 동기화를 수행한 것과 지역 데이터를 활용하여 추론 연산한 결과, 클러스터별 지역별 TV프로그램 시청 토큰 별 은닉토픽 할당 테이블을 유지할 때 추천 성능이 더욱 향상되어 나오는 결과를 확인하여, 제안된 구조의 추천 시스템 디자인의 효율성과 합리성을 확인할 수 있었다.
분산 컴퓨팅 환경에서 사용되어지는 빅 데이터 파일 시스템은 IoT(Internet of Things) 노드에서 처리해야할 데이터 탐색 시 모든 저장장치를 탐색하기 때문에 속도가 느리며 트래픽으로 인한 오버헤드가 발생할 수 있다. 본 연구에서는 IoT 노드의 분산 컴퓨팅 환경에서 빅 데이터를 좀 더 효율적으로 처리하고 빠른 검색을 위해 머신 러닝 기법을 이용한 분산 프레임워크를 제안하며 IoT 노드에서의 데이터 처리를 위해 다른 저장 장치로의 불필요한 액세스를 사전에 방지하여 빠르고 정확한 연산 결과를 도출하여 효율성을 향상 시키고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.