• Title/Summary/Keyword: 분산학습

Search Result 542, Processing Time 0.026 seconds

Intrusion Detection System based on Mobile Agents (자율성을 가진 동적 에이전트 기반의 침입탐지 시스템)

  • 전준철;이성운;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.859.2-897
    • /
    • 2002
  • 네트워크의 급격한 발전에 따라 컴퓨터의 보안 문제가 계속 대두되고 있다. 이러한 보안관리 시스템으로 이동 에이전트를 이용한 침입탐지 시스템이 계속 연구되어지고 있다. 본 논문에서는 기존의 침입탐지시스템을 고찰하고 작은 에이전트의 그룹으로 구성된 자율성을 가진 이동 에이전트를 기반으로 한 모듈 접근방식의 시스템을 위한 모델링을 제공한다. 제안된 모델은 침입 정보를 동적으로 수집하고 탐지 에이전트를 학습시키고 탐지한다. 이동 에이전트는 통신 비용절감, 로컬자원 사용의 한계에서의 독립, 관리의 편의성 제공. 비동기 연산 등 다양한 이점을 가지고, 분산 연산을 위만 유동성 있는 구조를 제공한다.

  • PDF

Optical Implementation of Neural Neworks (신경회로망의 광학적 구현)

  • 김흥만;정재우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.07a
    • /
    • pp.55-59
    • /
    • 1991
  • 신경회로망은 뒤뇌의 신경조직이 갖는 병렬적이며 분산적인 정보처리 능력을 흉내낸 인공적인 회로망이다. 이러한 신경회로망을 영상인식, 음성인식, 적응제어 및 최적화등에 응용할 경우 지금까지 얻지 못하였던 우수한 여러 가지 특성을 얻을수 있음을 알려짐에 따라 신경회로망을 구체적으로 구현하고자 하는 연구가 활발히 이루어지고 있다. 본 고에서는 신경소자간의 연결세기의 변조에 의한 학습 원리를 설명하고 광전기적인 그현방법에 대해서 몇 개의 예를 들어 설명하고 그 발전 가능성에 대하여 기술하였다.

  • PDF

The Development of CSCW Model for Distance Education/Training (컴퓨터활용교육/훈련을 위한 CSCW모형 개발)

  • 심부성
    • Proceedings of the Korea Database Society Conference
    • /
    • 1995.12a
    • /
    • pp.153-162
    • /
    • 1995
  • Network를 통하여 분산되어 있는 멀티미디어PC들의 사용자간에 개별/공동학습 및 저작을 지원하기 위한 CSCW모형에 대하여 논한다. 이 응용 모형은 사용자나 저작자들이 어떻게 협력할 수 있는지, 다사용자 간의 상호작용을 지원할 수 있는 모드에는 어떤 것이 있는지를 기술한다. 또한 통신과 협력기능을 갖는 하부구조를 기반으로 멀티미디어 인터페이스를 통한 공유작업공간을 구축하고, 헙력하여 복잡한 문제를 해결하는 환경 설계에 대하여 논한다.

  • PDF

Collaborative remote control education system using Device Driver Hooking (Device Driver Hooking을 응용한 상호 원격 제어 교육 시스템)

  • Lee, Hee-Duk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.281-284
    • /
    • 2002
  • 현재 많은 사용자들이 정보 교육과 전달을 위하여 CD-ROM 이나 인터넷 환경과 그것의 응용을 이용 한다. 하지만, 현재 상황에서의 정보는 한 방향으로만 전달되며 사용자간 정보 공유와 공유된 정보에 대한 설명 수단은 극히 제한되어 있다. 본 논문에서 제안하는 시스템은 공유된 미디어 객체에 대하여 Mouse Recording 및 Player를 통하여 공동작업에 참여한 사용자들이 동일 View를 통해 참조하고 고가의 어플리케이션을 직접 실습 및 참조할 수 있도록 설계, 구현되었다. 또 피교육자들의 컴퓨터를 제어함으로 분산 시스템 환경 하에서 원격교육 등에서 정보 교환 및 학습 수단으로 사용될 수 있다.

  • PDF

Detection Model Generation System using Learning (학습을 통한 탐지 모델 생성 시스템)

  • 김선영;오창석
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In this paper, We propose detection mood generation system using learning to generate automatically detection model. It is improved manpower, efficiency in time. Proposed detection model generator system is consisted of agent system and manager system. Model generation can do existing standardization by genetic algorithm because do model generation and apply by new detection model. according to experiment results, detection model generation using learning proposed sees more efficiently than existing intrusion detection system. When intrusion of new type occur by implemented system and decrease of the False-Positive rate, improve performance of existing intrusion detection system.

  • PDF

Improving Discriminative Feature Learning for Face Recognition utilizing a Center Expansion Algorithm (중심확장 알고리즘이 보강된 식별적 특징학습을 통한 얼굴인식 향상기법)

  • Kang, Myeong-Kyun;Lee, Sang C.;Lee, In-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.881-884
    • /
    • 2017
  • 좋은 특징을 도출할 수 있는 신경망은 곧 대상을 잘 이해하고 있는 신경망을 의미한다. 그러나 얼굴과 같이 유사한 이미지를 분류하기 위해서는 신경망이 좀 더 구분되는 특징을 도출해야한다. 본 논문에서는 얼굴과 같이 유사도한 이미지를 분류하기 위해 오차함수에 중심확장(Center Expansion)이라는 오차를 추가한다. 중심확장은 도출된 특징이 밀집되면 클래스를 분류하는 매니폴드를 구하기 어려워져 분류 성능이 하락되는 문제를 해결하기 위해 제안한 것으로 특징이 밀집될 가능성이 높은 부분에 특징이 도출되지 않도록 강제하는 방식이다. 학습 시 활용하는 오차는 일반적으로 분류 문제를 위해 사용되는 softmax cross-entropy 오차와 각 클래스의 분산을 줄이는 오차 그리고 제안한 중심확장 오차를 조합해 구할 것이다. 본 논문에서는 제안한 중심확장 오차를 조합한 모델과 조합되지 않은 모델이 결과적으로 특징 도출과 분류에 어떠한 영향을 주었는지 알아볼 것이다. 중심확장을 조합해 학습한 모델이 어떤 영향을 주었는지 알기 위해 본 논문에서는 Labeled Faces in the Wild를 활용해 분류 실험을 진행할 것이다. Labeled Faces in the Wild을 활용해 실험한 결과 중심확장을 활용한 모델과 활용하지 않은 모델간의 성능을 차이를 확인할 수 있었다.

A Study on Object-Oriented Programming Education for Improving Logical Thinking Ability of Elementary School Students (초등학생의 논리적 사고력 향상을 위한 객체지향 프로그래밍 교육 연구)

  • Park, Kyeong-Mo;Hong, Tae-Jin
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.367-373
    • /
    • 2009
  • Computer programming education helps students understand abstract concepts better and solve given problems independently. Many previous studies on programming education have focused on procedural programming languages such as BASIC and C, but studies on objected-oriented program ming language like JAVA is rare. This paper examines how an architectural neural, objected-oriented JAVA programming study system can improve logical thinking ability and encourage self-led study and stimulate interests in computers among elementary school students. The system has been developed and is suitable for distributed Internet environment. The experiment results demonstrated that the objected-oriented programming education enhances logical thinking ability, exerts a positive impact on student achievement in math and science, and stimulate interests in computers.

  • PDF

Extracting Minimized Feature Input And Fuzzy Rules Using A Fuzzy Neural Network And Non-Overlap Area Distribution Measurement Method (퍼지신경망과 비중복면적 분산 측정법을 이용한 최소의 특징입력 및 퍼지규칙의 추출)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer with minimized number of feature in put using the neural network with weighted fuzzy membership functions (NEWFM) and the non-overlap area distribution measurement method. NEWFM is capable of self-adapting weighted membership functions from the given the Wisconsin breast cancer clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from n set of enhanced bounded sums of n set of small, medium, and large weighted fuzzy membership functions. Then, the non-overlap area distribution measurement method is applied to select important features by deleting less important features. Two sets of prediction rules extracted from NEWFM using the selected 4 input features out of 9 features outperform to the current published results in number of set of rules, number of input features, and accuracy with 99.71%.

Hybrid All-Reduce Strategy with Layer Overlapping for Reducing Communication Overhead in Distributed Deep Learning (분산 딥러닝에서 통신 오버헤드를 줄이기 위해 레이어를 오버래핑하는 하이브리드 올-리듀스 기법)

  • Kim, Daehyun;Yeo, Sangho;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.7
    • /
    • pp.191-198
    • /
    • 2021
  • Since the size of training dataset become large and the model is getting deeper to achieve high accuracy in deep learning, the deep neural network training requires a lot of computation and it takes too much time with a single node. Therefore, distributed deep learning is proposed to reduce the training time by distributing computation across multiple nodes. In this study, we propose hybrid allreduce strategy that considers the characteristics of each layer and communication and computational overlapping technique for synchronization of distributed deep learning. Since the convolution layer has fewer parameters than the fully-connected layer as well as it is located at the upper, only short overlapping time is allowed. Thus, butterfly allreduce is used to synchronize the convolution layer. On the other hand, fully-connecter layer is synchronized using ring all-reduce. The empirical experiment results on PyTorch with our proposed scheme shows that the proposed method reduced the training time by up to 33% compared to the baseline PyTorch.

Random Balance between Monte Carlo and Temporal Difference in off-policy Reinforcement Learning for Less Sample-Complexity (오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도)

  • Kim, Chayoung;Park, Seohee;Lee, Woosik
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • Deep neural networks(DNN), which are used as approximation functions in reinforcement learning (RN), theoretically can be attributed to realistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo learning (MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another recent research shows when the information observed by the agent from the environment is partial on complex control works, it indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for alleviating reduce performance degradation. In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC, which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC. These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based on the results shown in previous studies, we attempt to exploit a random balance with a mixture of TD and MC in RL without any complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixture and the well-known DQN using only the TD-based learning, we demonstrate that a well-performed TD learning are also granted special favor of the mixture of TD and MC through an experiments in OpenAI Gym.