• Title/Summary/Keyword: 분산용액

Search Result 414, Processing Time 0.019 seconds

Characterization of Heavy Metals in the Stream Sediment around an Old Zinc Mine (가학광산 지역 하천 저니토 중금속의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.432-438
    • /
    • 1996
  • This study was carried out to prepare information for the establishment of countermeasures for an area contaminated with minewaste from an old zinc mine at Kahak-long in Kwangmyong. Minewaste and bottom sediments from the streams in this area were sampled and were analyzed for Cd, Cu, Pb, and Zn extracted with different solution. Total heavy metal contents in both minewaste and bottom sediments were fairly high. Cadmium and Zn contents in the minewaste and Cd, Cu, Pb, and Zn contents in the bottom sediments extracted with 0.1 N HCl showed a much higher level than those in the background level of paddy soils and in the soils around the other metal mines regardless of the distance from the mine. Sulfide/residue forms of Cd, Cu, Pb, and Zn covered the highest portions for the minewaste. For bottom sediments, sulfide/residue forms of Cu and Zn formed the highest portions, whereas the contents of both carbonate and sulfide/residue forms of Cd and Pb were significant. The lower the pH of the extracting solutions, the more heavy metals extracted from both minewaste and bottom sediments.

  • PDF

Development of Analysis Method for Cholesterol in Infant Formula by Direct Saponification (직접 검화법을 이용한 조제분유의 콜레스테롤 분석법 개발)

  • Kim, Jin-Man;Park, Jung-Min;Yoon, Tae-Hyung;Leem, Dong-Gil;Yoon, Chang-Yong;Jeong, Ja-Young;Jeong, In-Seek;Kwak, Byung-Man;Ahn, Jang-Hyuk
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.944-951
    • /
    • 2011
  • An improved cholesterol analysis method was developed for powdered infant formula by gas chromatographic separation after liquid-liquid extraction and partition. In the official Korea Food Standard method for cholesterol analysis, the water phase and solvent phase were not well separated in the case of emulsified foods such as powdered infant formulas and baby foods. For the rapid and simple sample preparation method, an optimized direct saponification condition was established for heating temperature, heating time, and KOH concentration. From the results, the optimum conditions were as follows: heating temperature $90^{\circ}C$, heating time 60 min, and 16 M KOH 10 mL for a 2 g infant formula sample; improved separation condition for gas chromatography was as follows: the initial oven condition was $250^{\circ}C$ for 25 min, the oven temperature was increased to $290^{\circ}C$ by $10^{\circ}C$/min ratio, and finally the oven temperature remained at $290^{\circ}C$for 9 min. The developed method could be implemented for the study of cholesterol, providing the advantages of reduced inspection time and cost in emulsified foods such as infant formula.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

The color stability and antibacterial of provisional polyethyl methacrylate (PEMA) resin with zirconia nanoparticles (지르코니아 나노입자 첨가된 PEMA (Polyethyl Methacrylate)레진 표면의 색안정성 및 항균평가)

  • Kim, Hee-Seon;Lee, Seon-Ki;Jang, Woohyung;Park, Chan;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Purpose: This study aimed to evaluate the color stability and antibacterial properties of the surface of polyethyl methacrylate (PEMA) resin with zirconia nanoparticles added. Materials and Methods: The control group was pure PEMA resin, and the experiment group was PEMA resin 15 mm in diameter and 2.5 mm in thickness disk-shaped specimens with 2, 4 and 8 w/v% of zirconia nanoparticles added, which were respectively divided into Group Z2, Group Z4, and Group Z8. After analyzing the surface roughness and color stability of the specimens, their antibacterial properties were evaluated using Porphyromonas gingivalis (P. gingivalis). The Statistical analysis was performed using when normality was met in the Shapiro-Wilk test, one-way ANOVA was used to test parameters, and Tukey's test was used as a post hoc test. When normality was not met, the Kruskal-Wallis test, a non-parametric test was used (P < 0.05). Results: The surface roughness measurement found that there was no significant difference between the experimental and control groups. The color stability evaluation showed that the Z2, Z4, and Z8 groups were within the color range of natural teeth. The adhesion of P. gingivalis was evaluated to be significantly reduced in Group Z2 compared to the control group (P < 0.05). In the Z2 group, Z4 group, and Z8 group, dead cells bacteria than the control group were observed. Conclusion: In conclusion, PEMA resin with zirconia nanoparticles added was within the range of natural teeth in color and reduced the adhesion of P. gingivalis.