• Title/Summary/Keyword: 분산다형성

Search Result 12, Processing Time 0.018 seconds

Phylogenetic Relationships of Jeju Dogs to Other Domestic and Foreign Dog Breeds Determined by Using mtDNA D-loop Sequences (mtDNA D-loop의 염기서열에 의한 제주견과 우리나라 재래견 및 외국견품종과의 유연관계)

  • Kim, Mi-Gyoung;Kim, Nam-Young;Lee, Sung-Soo;Kim, Ky-IL;Yang, Young-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.303-310
    • /
    • 2011
  • Phylogenetic relationships of Jeju dogs to other domestic and foreign dog breeds were assessed using mtDNA D-loop sequences. Neighbor-joining trees were constructed using complete sequences (970 bp excluding the tandem repeat region) determined for five Cheju, four Jindo, four Sapsaree, five Pungsan, two of each East and West Laika dogs (Canis familiaris), two gray wolves (Canis lupus) and two coyotes (Canis latrans) and also published complete sequences for dogs. Coyote sequences were used as outgroups. In addition, a total of 214 haplotypes of 598bp D-loop sequences from 30 dog breeds were collected from GenBank and used to investigate genetic structure of population. In the analyses of full D-loop sequence variation and the phylogenetic trees constructed by neighbor-joining method, neither haplotypes nor clades specific for any domestic dog breeds were observed. The inter-species sequence variation (4.51%) between domestic dogs and wolves was much higher than the intra-species sequence variation within domestic dogs (1.63%) and wolves (3.64%). The divergence of the dog and wolf occurred approximately 1~2 million years ago based on these values. The taxa of Jeju dog breed in the phylogenetic tree are clustered separately and intermingled with other taxa of breeds, suggesting that active crossbreeding of Jeju dogs with other domestic breeds.

Estimation of Linkage Disequilibrium and Effective Population Size using Whole Genome Single Nucleotide Polymorphisms in Hanwoo (한우에서 전장의 유전체 정보를 활용한 연관불평형 및 유효집단크기 추정에 관한 연구)

  • Cho, Chung-Il;Lee, Joon-Ho;Lee, Deuk-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.366-372
    • /
    • 2012
  • This study was conducted to estimate the extent of linkage disequilibrium (LD) and effective population size using whole genomic single nucleotide polymorphisms (SNP) genotyped by DNA chip in Hanwoo. Using the blood samples of 35 young bulls born from 2005 to 2008 and their progenies (N=253) in a Hanwoo nucleus population collected from Hanwoo Improvement Center, 51,582 SNPs were genotyped using Bovine SNP50 chips. A total of 40,851 SNPs were used in this study after elimination of SNPs with a missing genotyping rate of over 10 percent and monomorphic SNPs (10,730 SNPs). The total autosomal genome length, measured as the sum of the longest syntenic pairs of SNPs by chromosome, was 2,541.6 Mb (Mega base pairs). The average distances of all adjacent pairs by each BTA ranged from 0.55 to 0.74 cM. Decay of LD showed an exponential trend with physical distance. The means of LD ($r^2$) among syntenic SNP pairs were 0.136 at a range of 0-0.1 Mb in physical distance and 0.06 at a range of 0.1-0.2 Mb. When these results were used for Luo's formula, about 2,000 phenotypic records were found to be required to achieve power > 0.9 to detect 5% QTL in the population of Hanwoo. As a result of estimating effective population size by generation in Hanwoo, the estimated effective population size for the current status was 84 heads and the estimate of effective population size for 50 generations of ancestors was 1,150 heads. The average decreasing rates of effective population size by generation were 9.0% at about five generations and 17.3% at the current generation. The main cause of the rapid decrease in effective population size was considered to be the intensive use of a few prominent sires since the application of artificial insemination technology in Korea. To increase and/or sustain the effective population size, the selection of various proven bulls and mating systems that consider genetic diversity are needed.