• Title/Summary/Keyword: 분사특성

Search Result 1,436, Processing Time 0.028 seconds

Dissolution Characteristics of Liquid $CO_2$ Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소의 용해특성)

  • Kim, N.J.;Lee, J.Y.;Seo, T.B.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • Global wanning induced by greenhouse gases such as carbon dioxide is a serious problem for mankind. Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, the solubility, the surface concentration, the droplet size and other factors of liquid carbon dioxide at various depths are calculated. The results show that liquid carbon dioxide changes to carbon dioxide bubble around 500 m in depth, and the droplet is completely dissolved below 500 m in depth if carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with the diameter of 0.015 m or less. In addition, the hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide. The surface concentration of carbon dioxide droplet with the hydrate film is about 50% at 1500 m in depth and about 60% at 1000 m in depth of the carbon dioxide solubility. Also, the ambient carbon dioxide concentration in the plume is an another crucial parameter for complete dissolution at the intermediate ocean depth, and the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.

  • PDF

Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles (미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안)

  • 좌성훈
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.310-317
    • /
    • 2000
  • With use of (G)MR head, thermal asperity (TA) has been a big concern in drive industry. In this study, we investigated several factors of heads and disks which affects the TA sensitivity of the drive. TA experiments were conducted by introducing the particles on the drives using a particle injection chamber. It was found that the slider ABS shape can help to reduce TA or contamination in the head/media interface. However, TA sensitivity of the drive mainly depend on the intrinsic property of (G)MR sensor. GMR head is much less sensitive to TA compared with MR head. However, in case that the same bias current was applied for both of MR and GMR head, TA sensitivity of GMR head became almost identical to that of MR head. Therefore it was found that the bias current is a dominant factor in determining TA sensitivity of the head. TA sensitivity of different types of disks was also studied. The scratch resistance of the carbon overcoat layer is the one of the main factors which influence TA rejection capability of the disks.

  • PDF

Characteristics of Liquid-Liquid Direct Contact Heat Exchanger for a Solar System (태양열 이용을 위한 직접접촉식 액-액 열교환기 특성)

  • 강인석;김종보;강용혁;곽희열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3276-3286
    • /
    • 1994
  • In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density less than water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the control of the interface at the top of the column. When it is connected with a solar collector which uses water as its working fluid, the main difficulties arise from the fact that the water can be frozen during winter time. In order to solve these problems and to demonstrate the technical feasibility of a direct contact liquid-liquid heat exchanger, liquids heavier than water with low freezing temperature has been utilized as dispersed phase liquids in a small laboratory scale model made of pyrex glass. In the present investigation, dimethyl phthalate(C/sub 6/H/sub 4/)COOCH/sub 3/)/sub 2/) and diethyl phthalate (C/sub 6/H/sub 4/(CO/sub 2/C/sub 2/H/sub 5/)/sub 2/) are utilized as heavy dispersed phase working fluids. The results of the present investigation the technical in the utilization of heavier dispersed working liquid in the spray-column liquid-liquid heat exchanger for a solar system. The overall average temperature difference along the column is found to be almost half of the initial temperature difference between the dispersed and the continuous phase. Despite the fact that the two phthalates tested in the experiment differ significantly in some of their physical properties, the volumetric heat transfer coefficients in terms of dispersed fluid superficial velocities were found to be similar for both phthalates tested.

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube (공기주입 노즐관이 장착된 관형막의 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.

Influence of Molecular Size of Liquid BR on Properties of Silica-Filled SBR Compounds (액상 BR의 분자 크기가 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • Low molecular weight polybutadiene (liquid BR) improves the filler dispersion in a silica-filled styrene-butadiene rubber (SBR) compound. In the present work, influence of molecular weight or the liquid BR on properties of a silica-filled SBR compound was studied. Minimum and maximum torques in the rheocurve for the compound containing the liquid BR with higher molecular weight (HLBR) are lower than those for the compound containing the liquid BR with lower one (LLBR) while the delta torques are nearly the same. Mooney scorch time of the compound containing HLBR is faster than that of the compound containing LLBR. Modulus or the compound containing HLBR is lower than that of the compound containing LLBR while tensile strength of the former is higher than that of the latter. The elongation at break of the former is also longer than that of the latter. Stability for the thermal aging at $90^{\circ}C$ for 3 days is less favorable for the former than for the latter.

  • PDF

A Study on Performance Improvement in Durability and Reliability of LPi Injector (LPI 인젝터의 성능 및 내구성 개선에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nnam;Baik, Seung-Kook;Shin, Moon-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.38-44
    • /
    • 2012
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPi (Liquid phase LPG injection) which uses pump for the high pressure supply of liquid LPG fuel and is able to meet the limits of better emission levels while it has an advantage of higher power. Although it has the advantage of power and lower emission levels, the characteristics of LPG, such as high vapor pressure, lower viscosity and surface tension than gasoline fuels makes it difficult design system. Therefore most fuel pumps and injectors are imported. In the present study, in order to domestically develop LPG injector which guarantees flow rates and optimal operation, the experimental investigation on leakage and flow rate characteristics of developed prototype injector was carried out at the bench test rig for developed injector.

Visualization of Transient Ignition Flow-field in a 50 N Scale N2O/C2H5OH Thruster (50 N급 아산화질소/에탄올 추력기의 점화 과도 유동장 가시화)

  • Kim, Dohun;Park, Jaehyeon;Yu, Myunggon;Lee, Kyungeun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • The combustion flowfield at the near-injector region of a 50 N scale $N_2O/C_2H_5OH$ thruster was visualized using shadowgraph technique. The explosive ignition was occurred at the design spray condition, and the expanding combustion gas quenched the flame immediately. Approximately after 83 ms from the initial ignition, the propellant spray was re-ignited, and the flame was stabilized after 23 ms elapsed. In the increased oxidizer flow rate condition, the transient pressure at the moment of ignition was smoother than explosive ignition, and the blow down phenomenon was not appeared in the same operating sequence. In addition, the flame was stabilized within 17 ms, and it is caused by improved propellants mixing before ignition.

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.

축소(Ⅰ) 수정형 엔진의 연소 시험

  • Kim, Young-Han;Kim, Yong-Wook;Lee, Jae-Yong;Moon, Il-Yoon;Ko, Young-Sung;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.147-152
    • /
    • 2002
  • In the preceding tests of Sub.(Ⅰ) engines, it was observed that the heat resistant capability of the engines was not enough, and the design of Sub.(Ⅰ) engines was modified to satisfy the mission requirement. Sub.(Ⅰ) Mod. engines have three major design parameters - the arrangement of main injectors, the impinging angle of main injectors and thermal barrier coating. More than 20 experiments were carried out to evaluate engine performance and heat resistance capability with respect to design parameters. Analysing the result of Sub.(Ⅰ) and Sub.(Ⅰ) Mod. engine tests, it is found that the decreased impinging angle, adopting the H-type arrangement(rather than radial type arrangement), and adopting the thermal barrier coating can increase heat resistance capacity substantially. The result show that the performance variation by design change is below 5 percents and the radial type arrangement of injectors has higher performance than H-type. However, the performance of 15°impinging angle engine is higher than that of 20°impinging angle engine, which is inconsistent to our expectation. High frequency instabilities may cause such phenomenon, which will be verified by a series of tests.

  • PDF

Analysis of Supercritical Shear Coaxial Jet Using Density Gradient Magnitude (밀도구배강도를 이용한 초임계 전단동축 제트 분석)

  • Lee, Keonwoong;Kim, Dohun;Son, Min;Han, Choyoung;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.59-66
    • /
    • 2013
  • Spray characteristics of single round jet with liquid nitrogen and coaxial spray with liquid nitrogen and gaseous argon were observed. Shadowgraph method was used for spray visualization, and density gradient magnitude image was used to analyse the result. In subcritical condition, irregularity of the jet surface was harder in the coaxial spray. In supercritical condition, diffusion of nitrogen injected from shear coaxial injector was faster than single jet. Jet diameter was induced by averaging images, in supercritical condition, difference of diameter of coaxial jet was rapidly decreased than that of single jet.