• Title/Summary/Keyword: 분사류

Search Result 117, Processing Time 0.022 seconds

Penetration and Breakup Characteristics of Pulsed Liquid Jets in Subsonic Crossflowse (아음속 수직분사제트에서의 가진 분무의 분무 특성연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-88
    • /
    • 2007
  • The spray characteristics and liquid column penetration of steady and pulsed injection measurements have been experimentally studied using high speed camera in liquid jets injected into subsonic crossflow. The objectives of this research are to comparison the spray characteristics of steady injection with pulsed injection. Moreover. the effects of frequency are also studied. As the result, This research has been showed that pulsed injection has different penetration compared with steady injection.

  • PDF

Characteristics of Jet Type Flame Holder for Ramjet Engine Combustors (램제트 엔진 연소기용 제트분사형 화염안정기의 특성분석)

  • Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.14-20
    • /
    • 2007
  • In this study, characteristics of jet type flame holder for ramjet engine combustors are investigated Jet flame holder can be easily controlled by the injection angle change and jet momentum variation without any thermal protection devices. Due to the intensive turbulent mixing effect, jet flame holder shows better flame holding performance than mechanical flame holders such as cavity, step and v-shape flame holder.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

Reaction Characteristics of Rubbers and LPG fuels in LPLi Fuel Supply System (고무류 반응특성이 LPG액상공급시스템의 연료분사기 성능에 미치는 영향)

  • Kim, Chang-Up;Park, Cheol-Woong;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type (the second generation technology) fuel supply system. To investigate the characteristics of LPG residue in liquid phase LPG injection system, various rubbers in LPG fuel system were reacted with LPG fuels during 3 months. The experimental results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And rubber properties of fuel pump cover were decreased after reaction test compared with those of the original rubber. Therefore, the rubber for fuel pump cover is not suitable for a proper material in LPLi fuel system. And these results can provide more information if a motor company shares the data of core rubber parts in field test LPLi vehicles.

  • PDF

Transition of Turbulent Kinetic Energy Through a Serial Unit of Straight-Duct, Contraction and Free-Jet (상류유동전개부, 수축부 및 자유분사류로 이어지는 유동장에서의 난류에너지 천이에 대한 연구)

  • 한용운;남경덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2368-2375
    • /
    • 1992
  • The transition of turbulent kinetic energy(TKE) balance along the centerline of the flow unit, which is composed of straight-duct, contraction and free-jet, has been investigated by the hot-wire anemometry. It is found that the mean turbulent kinetic energy is balanced by the dissipation in the internal flow region ; by the production and the dissipation, through contraction ; and by the dissipation, in initial region(X〈8D) of free-jet. But in the developing region (8D〈X〈20D) it is balanced by all of the three(ie, diffusion, production and dissipation). Finally, in the downstream of free-jet, the mean TKE is balanced again by dissipation like as the beginning. The decay-laws along the centerline are checked in the region of free jet as well as in the straightduct. After the developing region of free-jet also exist the decay-laws, the exponent of the axial turbulence being bigger than of the radial.

Fuel-Spray Characteristics of High Pressure Gasoline Injection in Cross Flows (횡단공기류에서의 고압 가솔린 분사시 연료분무 특성)

  • 이석환;최재준;김성수;이상용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.30-39
    • /
    • 2001
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced by the high pressure injector is of paramount importance in DISI(Direct Injection Spark Ignition) engines in that the primary atomization process must meet the requirement of quick and complete evaporation, mixing with air and combustion especially to prohibit the excessive HC emissions. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engine. The direct Mie scattered and shadowgraph images presented the macroscopic view of the liquid sprays and vapor fields. The velocity and particle size of fuel droplets were investigated by phase doppler anenometer(PDA) system. The processes of atomization and evaporation with a DISI injector were observed and consequently utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF