• Title/Summary/Keyword: 분무법

Search Result 409, Processing Time 0.022 seconds

Deposition characteristics of (Ba,Sr) $RuO_3$ thin films prepared by ultrasonic spraying deposition (초음파 분무 증착법으로 제조한(Ba,Sr) $RuO_3$ 산화물 전극의 증착 특성)

  • 홍석민;임성민;박흥진;김옥경
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.111-114
    • /
    • 2001
  • (Ba,Sr) $RuO_3$ thin films were fabricated on Si(100) wafer by metal organic chemical vapor deposition using ultrasonic spraying. When the substrate temperature was varied, the BSR thin films showed good crystallinity above 50$0^{\circ}C$ and showed (110) preferred orientation by X-ray diffraction measurements. The surface morphology, determined by atomic force microscopy, indicated that the grain size of BSR thin films depended strongly on the Ba/Sr ratio. With the increase in the amount of Sr relative to Ba, the resistivity of BSR films decreased fro m415 to 261 $\mu$$\Omega$${\cdot}$cm.

  • PDF

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

Preparation and properties of PbTiO$_3$thin films by MOCVD using ultrasonic spraying (초음파 분무 MOCVD법에 의한 PbTiO$_3$박막의 제조 및 특성)

  • 이진홍;김용환;이상희;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.205-210
    • /
    • 2000
  • Lead titanate thin films were fabricated on Si(100) wafer and ITO-coated glass substrates by metal organic chemical vapor deposition using ultrasonic spraying. When the ratio (Ti/Pb) of starting materials was 1.2, the films deposited on Si wafer had a single perovskite phase. The films deposited on ITO-coated glass had higher growth rate than that on Si wafer. As deposition temperature was increased from $530^{\circ}C$ to $570^{\circ}C$, dielectric constant was increased due to the increase of crystallinity and grain size. At $570^{\circ}C$, dielectric constant and dielectric loss of the films were 205 and 0.016, respectively. When the deposition temperature is higher than $600^{\circ}C$, dielectric constant was decreased.

  • PDF

Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method (화학적 환원법으로 제작한 은나노유체의 흡광계수)

  • Lee, S.H.;Kim, H.J.;Choi, T.J.;Kim, S.B.;Kang, Y.J.;Kim, D.J.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

A Study on the Diesel Flame by Means of Image Analysis ofn Shadow Photographs (음영사진의 화상해석에 의한 디젤화염에 관한 연구)

  • 장영준;박호준;신본무정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1222-1233
    • /
    • 1990
  • The formation and oxidation processes of soot particles in a diesel flame were investigated with a rapid compression machine. A cloud of soot particles was successfully visualized by means of the instantaneous laser shadow photographs technique and the equivalence ratio of the soot formation zone was estimated from a measured fuel concentration distribution in a nonevaporating spray. The temporal and spatial variation of soot concentration in the flame was also correlated with the rate of heat release. Soot particles appears first in a region near the flame tip when diffusion combustion period starts, and its concentration is a maximum at about the end of injection, then decreases due to oxidation. The reason for soot being formed in a fuel lean region near the flame tip is the evaporated fuel requires time to be pyrolized as it travels through the burning fuel rich zone towards the flame tip.

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

Preparation of methylammonium lead halide perovskite thin films by dual feed ultrasonic spray method (이중주입 초음파분무법에 의한 메틸암모늄 할로젠화 납 페로브스카이트 박막의 제조)

  • Kim, Rock Yoon;Kim, Tae Huei;Park, Kyung Bong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.6-11
    • /
    • 2019
  • Methylammonium lead halide ($MAPbX_3$, X = I, Br) thin films, used as the light absorber of perovskite solar cells, were prepared using the dual feed ultrasonic spray method. Going through a deposition at a substrate temperature of below $60^{\circ}C$ and then a final heat treatment at $75^{\circ}C$ for 5 minutes using dual feed ultrasonic spray method, $MAPbI_3$ single phase could be formed. Whereas undergoing a deposition at temperatures above $80^{\circ}C$, the spheroidal grains could be changed into rod-shaped fractal structures due to the decomposition of the perovskite phase. Furthermore, using the same method at a higher heat treatment temperature of $100^{\circ}C$, $MAPbI_{3-x}Br_x$ thin films could also be formed from $MAPbI_3$ and $MAPbIBr_2$ solution.

초소수 실리카 코팅층 제조와 표면 특성

  • Kim, Ji-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.123-123
    • /
    • 2012
  • 초소수성 표면은 150도 이상의 높은 물 접촉각과 10도 이하의 낮은 sliding angle을 가지며 self-cleaning, anti-contamination 기능을 갖고 있는 것이 특징이다. 재료표면의 친수성과 소수성을 제어하기 위해서는 화학적 인자인 물질의 표면에너지나 물리적 인자인 표면 거칠기를 조절하는 방법이 있다. 초소수성 표면을 구현하기 위해서는 표면의 거칠기를 증가시키거나 표면 에너지를 낮춰야 하는데 고체 표면의 거칠기를 증가시키기 위해서는 일반적으로 표면에 microscale과 nanoscale의 계층구조를 형성시키는 방법이 사용된다. 자연계에 매우 풍부하게 존재하는 실리카는 내구성과 내마모성, 화학적 안정성, 고온 안정성 등을 지니고 있으며 인체에 무해하기 때문에 다양한 종류의 전자기기 및 부품의 내외장 코팅에 적용이 검토되고 있다. 이러한 관점에서 본 연구에서는 초소수성 코팅층을 구현하는 하나의 방법으로서 졸-겔방법으로 실리카 졸을 합성하여 전기분무법을 사용하여 microscale의 실리카 입자 코팅층을 형성하였으며, 표면 미세구조 조절 및 계층구조 형성과 불소화처리 공정을 통하여 초소수성 실리카 코팅층을 제조하였다. 이러한 초소수성 실리카 코팅층의 표면거칠기, 자외선 영향향, 내구성 등을 초소수성 관점에서 평가하였다.

  • PDF

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

The Study on Two-color PIV Algorithm for a Measurement of Droplet Velocity (액적의 속도 측정을 위한 이색 PIV 알고리즘 연구)

  • Lee, K.H.;Lee, C.S.;Oh, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1999
  • It has been known that spray characteristics have an important effect on the mixture formation and directly influence the engine performances and the emissions. Up to now, the measurement of droplet size is well developed such as PDPA and PMAS though the behavior of small droplets during secondary atomization is not clear. Particle image velocimetry(PIV), a planar measuring technique, is a very efficient tool for studying complicated behavior and a fast and reliable method to track numerous droplets during injection. In this study, two-color scanning PIV is designed to obtain quasi-instantaneous two dimensional velocity data by using he-ion laser, rotating mirror and beam splitter. This PIV method which has high temporal and spatial resolution provides the information about the small complex droplet behavior.

  • PDF