• Title/Summary/Keyword: 분무법

Search Result 410, Processing Time 0.038 seconds

Powder Characteristic Changes of Spray-Dried WC-17%Co Composite Powder by Heat Treatment (분무건조된 WC-17%Co 복합분말의 열처리에 따른 분말특성변화)

  • Seol, Dong-Uk;Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1027-1032
    • /
    • 1997
  • 본 연구에서는 용사용WC-17%Co 복합분말을 분무건조법으로 제조하고 열처리 온도(85$0^{\circ}C$, 100$0^{\circ}C$, 115$0^{\circ}C$, 130$0^{\circ}C$)에 따른 조립분말의 미세구조, 입도분포, 유동도, 및 결정상변화를 고찰하였다. 분무건조상태의 입형은 구형이었으며, 입도분포, 평균입자크기, 유동성은 각각 20.6-51.7$\mu\textrm{m}$, 27.2$\mu\textrm{m}$, 0.26 sec/g 이었다. 열처리에 의하여 조립분말은 치밀화되어 130$0^{\circ}C$ 열처리 후에는 입도분포와 평균입자크기가 각 각 6.9-37.9$\mu\textrm{m}$과 17.8$\mu\textrm{m}$로 감소하였으며, 유동성은 0.12 sec/g로 향상되었다. 열처리중에 WC와 Co의 상화확산에 의하여 Co$_{6}$W$_{6}$C및 Co$_{3}$W$_{3}$C이 생성되었으며, 두 상이 나타나는 임계온도는 115$0^{\circ}C$이었다.

  • PDF

Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR (Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구)

  • Park, Hyung Sun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.