• Title/Summary/Keyword: 분무궤적

Search Result 19, Processing Time 0.019 seconds

Effects of Angled Injection on the Spray Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 분사각도 영향에 대한 분무특성 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Lee, Jang-Su;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.166-174
    • /
    • 2009
  • The liquid column trajectory and column breakup length characteristics have been experimentally studied in angled jets injected into subsonic crossflow. Pulsed shadowgraph photography and Planar Liquid Laser Induced Fluorescence measurements were used to determine the angled effects. And the main objectives of this research are to get a empirical formula of liquid column trajectory and breakup length with below the $90^{\circ}$ degree injection angle conditions, and were compared with previous results. It was also found that the empirical formula, which reversed injection conditions of air stream. As the result, This has been shown that liquid column trajectories and column breakup length were spatially dependent on various injection angle, normalized injector exit diameter, air-stream and fuel injection velocity. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between normal angled injection and reversed injection in subsonic crossflow.

Penetration and Breakup Characteristics of Pulsed Liquid Jets in Subsonic Crossflowse (아음속 수직분사제트에서의 가진 분무의 분무 특성연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-88
    • /
    • 2007
  • The spray characteristics and liquid column penetration of steady and pulsed injection measurements have been experimentally studied using high speed camera in liquid jets injected into subsonic crossflow. The objectives of this research are to comparison the spray characteristics of steady injection with pulsed injection. Moreover. the effects of frequency are also studied. As the result, This research has been showed that pulsed injection has different penetration compared with steady injection.

  • PDF

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

Correlations of Trajectory and Break-up Point for Liquid Jet Injected into Low Speed Cross-flow (저속 횡단유동장에 분사된 액체제트의 분무궤적 및 분열점에 대한 상관관계식)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • The correlations for cross-flow have not been well established, because of the complexity of breakup and atomization mechanism. A study was performed to investigate the characteristics of spray behaviour of liquid jet in the bag breakup regime injected into low-speed cross-flow with the pressure single-hole nozzle. The shadow-graphy method was used for the cross-flow jet visualization. The experimental variables of liquid jet were nozzle diameter $(0.3mm{\sim}1.0mm)$, injection pressure $(50kPa{\sim}150kPa)$, and the velocity of cross-flow $(27m/s{\sim}42m/s)$. The highest penetration trajectories of liquid jet are governed by the momentum ratio $({\rho}_{\iota}U_{\iota}^2/{\rho}_aU_{cross}^2)$ rather than the Weber number and the new empirical equations of the highest penetration trajectory and breakup point at low-speed corss-flow are established.

  • PDF

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF

Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow (아음속 횡단류로 분사되는 이상유동 제트의 분무특성)

  • Lee, Keunseok;Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.

An Investigation on the Spray Characteristics of Steady/Plused Jet in Crossflow in Model Ramjet Combustor (모델 램제트 연소기 내에서의 정상/가진 수직 분무 특성 연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Yoon, Young-Bin;Hwang, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • In this study, spray characteristics research of steady/pulsed injection in crossflow was performed experimentally in the model ramjet combustor. High-speed-camera photography was performed through a visualization window of model combustor, and then, steady and pulsed spray structures were observed and analyzed. Varying influx air temperature and fuel species, we could obtain the trajectory correlation in the steady injection case. In the experiment of pulsed injection, it is found that the pulsed frequency hardly influences spray trajectory. Also, it is found that, in the same injection pressure differential, the trajectory correlation of steady condition can be used for estimating pulsed spray trajectory.

  • PDF

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song Jin-Kwan;Ahn Kyu-Bok;Oh Jeong-Seog;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.201-206
    • /
    • 2005
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic crossflows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF