• Title/Summary/Keyword: 분말단조 공정

Search Result 17, Processing Time 0.018 seconds

Finite Element Analysis for Forging Processes of Rapidly Solidified Al-Si Alloys (급속응고 Al-Si계 합금의 단조공정에 대한 유한요소 해석)

  • 손현택
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.

  • PDF

Three Dimensional Finite Element Analysis for Powder Forging Process (분말단조 공정의 3차원 유한요소해석)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.104-111
    • /
    • 1996
  • In order to obtain homogeneous and high quality products in powder compaction forging process, it is very important to control stress, strain, density and density distributions. Therefore, it is necessary to understand quantitatively the elasto-plastic deformation and densification behaviors of porous metals and metal powders. In this study, elasto-plastic finite element method using Lee-Kim's pressure dependent porous material yield function has been used for the analysis of three dimensional indenting process. The analysis predicts deformed geometry, stress, strain and density distribution and load. The calculated load is in good agreement with experimental one. The calculated results do not show axisymmetric distributions because of the edge effect. The core part which is in contact with the indentor and the outer diagonal edge part are in compressive stress states and the middle part is in tensile stress state. As a results, it can be concluded that three dimensional analysis is more realistic than axisymmetric assumption approach.

  • PDF

Study on Improvement of Tungsten Alloy Granular Powder in Defense Industry (방산 분야 텅스텐 합금 과립분말 개선 연구)

  • Ji, Sangyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.206-211
    • /
    • 2020
  • Tungsten alloys are used widely in general industrial fields, but they are difficult to cast, so products are manufactured using powder metallurgy. In this study, a mixed powder of tungsten, nickel, and iron homogenized using a ball mill was added to pure water as a solvent, and PVA as a binder was added to prepare a spray drying mixture. The mixed liquid was prepared using a spraying machine. A study was carried out to produce a granular powder that can reduce the variations between products during the molding and sintering process of the powder metallurgy method. A preliminary experiment was conducted to confirm the influence of the variables in the granulation process. Through the preliminary test results, this experiment was performed with the volume of solvent of the spray drying the mixture as an independent variable, and granular powder having a mean particle size similar to that of the existing mass-production conditions and an increased apparent density was prepared. In addition, a pilot test was conducted for the molding and sintering process. The improved granular powder reduced the characteristic variation (weight variation) of the mass-produced product.

Finite Element Analysis of Powdered Magnet Sinter-forging Processes considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 단조성형공정의 유한요소해석)

  • 이형욱
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.82-85
    • /
    • 1999
  • Permanent magnets of Nd-Fe-B group have kept a key post in the permanent magnet market and used in various parts. Tube Process is a process to produce permanent magnets using a deformable tube for denslfication of powder magnets. Advantage claimed for this process is that it can accomplish both densification and anisotropication in one step forming. In this paper. the simulation has been carried out for a full Tube Process in a closed Qe considering the compressibility of material, arbitrary curved shape and deformable body contact between Nd-Fe-B powder magnet and copper tube. The results show that the analysis of Tube Process is applicable with great help in the stage of preform design.

  • PDF

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

Preform Design for the Sinter-forging Process of Arc-shaped Powdered Magnets (원호 형상을 가지는 분말자석 단조성형공정에서의 예비성형체 설계)

  • Kim, Seung-Ho;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Tube Process(TP) is one of the processes to produce permanent magnets. Advantage claimed for this process is that it can accmplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses deformable tube for densification of powder magnets. TP has, however, difficulties in manufacturing permanent magnets from Nd-Fe-B green powder due to folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding resulted from large height reduction and localized densification. Therefore, an adequate preform is necessary to reduce folding, lead magnets into almost desired final shape and get uniform densification. In this paper, preform design for TP is carried out without a deformable tube to investigate the behaviour of magnet sinter-forging. Preform design is accomplished to increase the effective magnet area with a near net shape and uniform densification.

  • PDF

A Study on the Applicability of CNT/Aluminum Nanocomposites to Automotive Parts (CNT강화 알루미늄 나노복합재의 자동차용 부품 적용성 연구)

  • Min, Byung Ho;Nam, Dong Hoon;Park, Hoon Mo;Lee, Kyung Moon;Lee, Jong Kook
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2015
  • Various characteristics(thermal expansion, microstructure, etc.) and mechanical properties of CNT-aluminum nano composites manufactured by volume production system were evaluated. Also, formability and durability were evaluated for potential applications in automotive parts, via compared with high-elasticity material (A390) and the current commercial product. As a result, this composite has excellent mechanical properties and formability, therefore, to verity its potential for application as light and high strength materials in automobile part.