• 제목/요약/키워드: 분리학습

검색결과 413건 처리시간 0.026초

온톨로지의 구축과 학습: 상하위 관계

  • 최기선;류법모
    • 정보과학회지
    • /
    • 제24권4호
    • /
    • pp.24-30
    • /
    • 2006
  • 온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.

할선법과 모멘트에 의한 신경망 기반 독립성분분석 (Independent Component Analysis Based on Neural Networks Using Secant Method and Moment)

  • 오정은;김아람;조용현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.325-329
    • /
    • 2002
  • 본 연구에서는 할선법과 모멘트를 조합한 학습알고리즘의 신경망 기반 독립성분분석 기법을 제안하였다. 제안된 알고리즘은 할선법과 모멘트에 기초를 둔 고정점 알고리즘의 독립성분분석 기법이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위해 negentropy를 최대화는 과정에서 요구되는 1차 미분에 따른 계산량을 줄이기 위함이고, 모멘트는 최대화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 256×256 픽셀의 8개 지문영상에서 임의 혼합행렬에 따라 발생되는 혼합지문들을 각각 대상으로 시뮬레이션한 결과, 할선법만에 기초한 기법보다 우수한 분리성능과 빠른 학습속도가 있음을 확인하였다.

  • PDF

강화학습 기반 실시간 반응형 퀘스트 생성 시스템 중앙 관리자 영향력 연구 (Proposal Realtime Reaction Generate Quest System Basement Reinforcement Learning Central System)

  • 김태훈 ;김창재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.499-500
    • /
    • 2023
  • 강화학습 기반의 다중 에이전트 시스템을 이용한 서버의 실시간 상황을 제공 받아서 상황에 알맞은 퀘스트를 생성해주는 시스템을 제안한다. 학습 가이드 역할을 하는 CTDE 의 중앙 관리자의 역할을 위한 에이전트를 분리하여 작동하게 함으로서 퀘스트의 지향점을 잡는 것이다.

영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템 (Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features)

  • 이민택;이규원
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.826-832
    • /
    • 2016
  • 본 논문에서는 고가의 디지털 설진 장비와 특별한 장치 없이 누구나 손쉽게 사용할 수 있는 디지털 설진 시스템의 첫 단계로 미각 영역별 균열 유무를 판별하는 시스템을 제안한다. 훈련 DB는 한방 병원에서 수집한 사진 261장을 바탕으로 Haar-like feature, Adaboost 학습을 하였다. 학습된 결과를 통하여 입력영상으로부터 혀 후보영역을 검출하고, 검출된 혀 후보영역으로부터 혀 영역만을 분리하기 위하여 261장의 훈련 DB의 HSV 컬러모델의 Hue 성분 평균 값을 산출하였다. 검출된 혀 윤곽으로부터 Connected Component Labeling을 통하여 혀 영역을 분리 하였다. 분리된 혀 영역의 상대적 너비와 높이를 이용하여 미각 영역별 로 분할하였다. 분할된 미각 영역별 영상은 Gray영상으로 변환하고, 각각의 영역별 평균 밝기를 산출하여 이진화하였다. 이진화 영상에 Connected Component Labeling을 통하여 균열 유무를 판별하였다.

Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상 (The Bi-Cross Pretraining Method to Enhance Language Representation)

  • 김성주;김선훈;박진성;유강민;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

다단계 기계학습 기법을 이용한 구묶음 성능향상 (Performance Improvement of Chunking Using Cascaded Machine Learning Methods)

  • 전길호;서형원;최명길;남유림;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.107-109
    • /
    • 2011
  • 기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.

  • PDF

주파수 특성 기저벡터 학습을 통한 특정화자 음성 복원 (Target Speaker Speech Restoration via Spectral bases Learning)

  • 박선호;유지호;최승진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권3호
    • /
    • pp.179-186
    • /
    • 2009
  • 본 논문에서는 학습이 가능한 특정화자의 발화음성이 있는 경우, 잡음과 반향이 있는 실 환경에서의 스테레오 마이크로폰을 이용한 특정화자 음성복원 알고리즘을 제안한다. 이를 위해 반향이 있는 환경에서 음원들을 분리하는 다중경로 암묵음원분리(convolutive blind source separation, CBSS)와 이의 후처리 방법을 결합함으로써, 잡음이 섞인 다중경로 신호로부터 잡음과 반향을 제거하고 특정화자의 음성만을 복원하는 시스템을 제시한다. 즉, 비음수 행렬분해(non-negative matrix factorization, NMF) 방법을 이용하여 특정화자의 학습음성으로부터 주파수 특성을 보존하는 기저벡터들을 학습하고, 이 기저벡터들에 기반 한 두 단계의 후처리 기법들을 제안한다. 먼저 본 시스템의 중간단계인 CBSS가 다중경로 신호를 입력받아 독립음원들을(두 채널) 출력하고, 이 두 채널 중 특정화자의 음성에 보다 가까운 채널을 자동적으로 선택한다(채널선택 단계). 이후 앞서 선택된 채널의 신호에 남아있는 잡음과 다른 방해음원(interference source)을 제거하여 특정화자의 음성만을 복원, 최종적으로 잡음과 반향이 제거된 특정화자의 음성을 복원한다(복원 단계). 이 두 후처리 단계 모두 특정화자 음성으로부터 학습한 기저벡터들을 이용하여 동작하므로 특정화자의 음성이 가지는 고유의 주파수 특성 정보를 효율적으로 음성복원에 이용 할 수 있다. 이로써 본 논문은 CBSS에 음원의 사전정보를 결합하는 방법을 제시하고 기존의 CBSS의 분리 결과를 향상시키는 동시에 특정화자만의 음성을 복원하는 시스템을 제안한다. 실험을 통하여 본 제안 방법이 잡음과 반향 환경에서 특정화자의 음성을 성공적으로 복원함을 확인할 수 있다.

혼합형 학습규칙 신경 회로망을 이용한 제어 방식 (Control Method using Neural Network of Hybrid Learning Rule)

  • 임중규;이현관;권성훈;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.370-374
    • /
    • 1999
  • 본 논문에서는 역전파 알고리즘과 헵 학습규칙의 장점을 최대한 살려 이용하고, 역전파 알고리즘의 문제점인 지역 최소점에 빠지는 경우와 학습시간이 느린 단점과 헵 학습규칙의 문제점인 학습 패턴의 저장능력이 매우 제한되고 선형적 분리가 되지 않는 복잡한 문제에는 적용할 수 없다는 단점등을 개선하기 위하여 혼합형 학습규칙을 제안한다. 제안하는 학습규칙은 입력층과 은닉층에 흔합형 학습규칙과 은닉층과 출력층에 역전파(Back-Propagation) 학습규칙을 적용한 혼합형이다. 제안한 혼합형 학습규칙을 이용한 신경회로망의 유용성을 확인하기 위하여 단일관절 매니플레이터를 이용하여 추종제어에 대한 시뮬레이션을 하여 기존의 역전파 알고리즘을 이용한 직접적응 제어 방식과 제어성능을 비교 검토한 결과 다음과 같은 특성을 확인하였다.

  • PDF

다중 도메인 답변 생성 모델을 위한 인간의 기억 시스템을 모방하는 지속 학습 기법 (Continual Learning with Mimicking Human Memory System For Multi-domain Response Generator)

  • 이준범;박형준;송현제;박성배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.215-220
    • /
    • 2021
  • 다중 도메인에 대해 답변 생성 모델이 동작 가능하도록 하는 가장 쉬운 방법은 모든 도메인의 데이터를 순서와 상관없이 한번에 학습하는 것이다. 하지만 이경우, 발화에 상관 없이 지나치게 일반적인 답변을 생성하는 문제가 발생한다. 이에 반해, 도메인을 분리하여 도메인을 순차적으로 학습할 경우 일반적인 답변 생성 문제를 해결할 수 있다. 하지만 이경우 새로운 도메인의 데이터를 학습할 때, 기존에 학습한 도메인에 대한 성능이 저하되는 파괴적 망각 현상이 발생한다. 파괴적 망각 현상을 해결하기 위하여 다양한 지속학습기법이 제안되었으며, 그 중 메모리 리플레이 방법은 새로운 도메인 학습시 기존 도메인의 데이터를 함께 학습하는 방법으로 파괴적 망각 현상을 해결하고자 하였다. 본 논문에서는, 사람의 기억 시스템에 대한 모형인 앳킨슨-쉬프린 기억 모형에서 착안하여 사람이 기억을 저장하는것과 유사한 방법으로 메모리 리플레이 방법의 메모리 관리방법을 제안하였고, 해당 메모리 관리법을 활용하는 메모리 리플레이 방법을 통해 답변 생성 모델의 파괴적 망각 현상을 줄이고자 하였다. 다중 도메인 답변 생성에 대한 데이터셋인 MultiWoZ-2.0를 사용하여 제안 모델을 학습 및 평가하였고, 제안 모델이 다중 도메인 답변 생성 모델의 파괴적 망각 현상을 감소시킴을 확인하였다.

  • PDF

트루타입 폰트 기반 한자 자동 획 분할 및 획 순서 부여 (Automatic Stroke Extraction and Stroke Ordering Based on TrueTypeFont)

  • 장현규;구상옥;정순기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.526-534
    • /
    • 2006
  • 이 논문에서는 트루타입 폰트의 글자 외곽선 데이터를 이용하여 자동으로 한자의 획을 분리하고 획 순서를 정하는 방법을 제안한다. 트루타입 폰트에는 글자의 외곽선 정보가 벡터 형식으로 저장되어 있으며, 이러한 벡터들은 일정한 규칙으로 배열되어 있다. 이와 같은 벡터들의 배치를 이용하여 한자의 획이 될 수 있는 벡터들의 집합을 조합하여 독립적인 획을 분리해 내고, 글자를 획 별로 분리하여 본래 트루타입 폰트의 저장 형식과 동일한 파일 형식으로 저장한다. 또한 분리된 모든 획에 대하여, 획 이름을 정의하고, 정의된 획들 간의 위치와 상관관계를 이용하여, 획 사이의 우선순위를 결정하여 획 순서를 부여한다. 이 작업들은 사람의 작업 없이 순수하게 자동으로 이루어지므로, 시간과 노력을 최소화 할 수 있다. 게다가, 획 별로 분리되고 순서대로 정리된 한자들은 트루타입 폰트에 저장되어 있는 모양과 특성을 그대로 가지고 있으므로, 단순히 폰트 자체로써 사용할 수도 있을 뿐만 아니라, 한자 학습 컨텐츠로도 이용이 가능하며, 각종 애니메이션 효과 등 다양한 분야에서 융통성 있게 활용될 수 있다.

  • PDF