• Title/Summary/Keyword: 분리(separation)

Search Result 4,370, Processing Time 0.027 seconds

Vocal and nonvocal separation using combination of kernel model and long-short term memory networks (커널 모델과 장단기 기억 신경망을 결합한 보컬 및 비보컬 분리)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.261-266
    • /
    • 2017
  • In this paper, we propose a vocal and nonvocal separation method which uses a combination of kernel model and LSTM (Long-Short Term Memory) networks. Conventional vocal and nonvocal separation methods estimate the vocal component even in sections where only non-vocal components exist. This causes a problem of the source estimation error. Therefore we combine the existing kernel based separation method with the vocal/nonvocal classification based on LSTM networks in order to overcome the limitation of the existing separation methods. We propose a parallel combined separation algorithm and series combined separation algorithm as combination structures. The experimental results verify that the proposed method achieves better separation performance than the conventional approaches.

Missile Flight Condition for Slip-in Booster's Safe Separation (내삽형 부스터 안전 분리를 위한 비행 조건 연구)

  • Oh, Hyun-Shik;Lee, Ho-Il;Cho, Jin;Kim, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • A mathematical model of slip-in booster separation dynamics is described. A longitudinal 3-DOF(degree of freedom) 2-body dynamic model is developed to simulate the separation dynamics. Aerodynamic models of the missile and the exposed area of booster are built. And, gas generator pushing the booster out and internal channel pressure drop are modelled. To simulate the model, it is assumed that the missile can maintain the 1g level-fight condition during the separation. With this assumption, the interaction forces between missile and booster through the separation phases: phase 0: initial, phase 1: linear translation, and phase 2: free flight motion are defined. Using the simulation, missile flight conditions for slip-in booster`s safe separation, which can be represented by Mach vs. height envelope, are suggested.

Photogrammetric Techniques for Safe Separation Flight Test (안전분리 비행시험을 위한 사진계측 기법)

  • Kim, Sang-Jin;You, Heung-Cheol;Reu, Taekyu;Park, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.673-679
    • /
    • 2013
  • Photogrammetric techniques were used to analyze separation characteristics of store in safe separation flight test. In this analysis, we used single camera method to analyze 6 degrees of freedom of separated store. We established instrumentation requirements based on theoretical background of photogrammetry and guidelines of MIL-HDBK-1763. We applied the photogrammetry to flight test and extracted separation trajectory. We empirically estimated the input variables uncertainties of photogrammetry and its effects on separation trajectory. Using this trajectory which includes the photogrammetric error, we analyzed the safety of separation.

Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane (중공사막을 이용하는 다성분 혼합물 분리공정의 모델링)

  • Kim, Sin-Ah;Kim, Jin-Kuk;Lee, Young Moo;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

A Flow Characteristics for a Separation Behavior of Two-body Vehicle (비행 조건에 따른 비행체 단분리의 주위 유동장 해석)

  • Park, Geunhong;Kim, Kiun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.266-267
    • /
    • 2017
  • A numerical investigation of the stage separation behavior of two-body vehicle focusing on its flow characteristics were carried out. For this simulation, separation of a booster from vehicle was modeled by a chimera grid system and calculated by using commercial code, CFD-FASTRAN$^{TM}$. Consideration of a spring force, gravity and relative acceleration of a booster was the essential factor that simulates the realistic situation. In this study, It was validated that the booster separation time decreases with increase in flight mach number and angle of attack. In view of the results so far achieved, it was expected that the dynamics modeling and boundary condition set up applied in this study will be helpful in a estimation of a safe stage separation and event sequence of flight test.

  • PDF

A Study on Surface Charge Characteristics on Various Plastic Materials for Ttiboelectrostatic Separation of Plastic Wastes (폐플라스틱 정전분리를 위한 하전특성에 관한 연구)

  • 김도균;조희찬;전호석
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • Triboelectrostatic Separation procese is a technology that different particles charged after contact and rubbing different materials are separated in an electric field. At this time, charged polarity of different materials depends on their own work function. Therefore this study discovers work functions of various plastics and determines charging characteristics for the specific optimum operation condition. The experiment is conducted with two sample sets composed of various different plastics. Each sample is charged by contact and rubbing different materials. Surface charge of charged particles is measured by Faraday Cage. The specific work function of an each plastic is driven by measured charging amount and charged particles are separated in a certain electric field ($\pm$20 kV). At last, the relationship between charging amount and separation efficiency is induced by the separation experiment.

Separation Characteristics of Oxygen Isotopes with Hydrophobic PTFE Membranes (소수성 PTFE 막의 산소동위원소 분리특성)

  • 김재우;박상언;김택수;정도영;고광훈;박경배
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2003
  • We measured the permeation characteristics of water with the hydrophobic PTFE membranes dependent on water temperature to confirm the separation of oxygen isotopes using Air Gap Membrane Distillation (AGMD) and Vacuum Enhanced Membrane Distillation (VEMD). Isotopic concentrations of $H_2^{16}O$ and $H_2^{18}O$ of the permeated water vapor were measured by Diode Laser Absorption Spectroscopy. Concentrations of the heavy oxygen isotopes in the permeated water vapor were decreased. Isotope separation coefficients for the hydrophobic PTFE membranes were 1.004∼1.01 depending on the experimental conditions. We observed the effects of air in membrane pores on the oxygen isotope separation. Isotope separation coefficients for the hydrophobic PTFE membranes without air in pores are higher than those for the membrane with air in pores.

Ground Separation Test to Verify Separation Stability of External Fuel Tank (외부연료탱크의 분리 안정성 검증을 위한 지상 분리시험)

  • Kim, Hyun-gi;Hong, Seung-ho;Ha, Byung-geun;Kim, Sung-chan;Lee, Jun-won
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.99-104
    • /
    • 2022
  • Aircraft pylon connects the engine or external stores to the main wing, and transfers the load acting on the pylon to the main structure of the aircraft. In particular, it should perform the function of separating the external store mounted on the pylon in case of emergency or mission performance. At this time, if the separation of the external store is not performed properly due to peripheral air flow or functional problems during the separation process of the external store, it may seriously impact the survivability of the aircraft. For this reason, to apply an external attachment to an aircraft, it is necessary to prove the stability of the external attachment in the separation situation in advance. In this paper, we present the result of the ground separation test performed to confirm that the external fuel tank, which is an external attachment, can be safely separated from the pylon. As a result of the test, the separation movement of the external fuel tank was measured with a high-speed camera, and the stability of the separation of the external fuel tank from the pylon were confirmed through the ground separation test. Additionally, the test result provides basic data for the stability evaluation of the separation of external attachments in actual aircraft.