• Title/Summary/Keyword: 분류 시스템

Search Result 6,503, Processing Time 0.034 seconds

An Automatic Classification System for Hanmail Net Questions Using Multiple Neural Networks (다중 신경망을 이용한 한메일넷 질의 자동분류 시스템)

  • 이지행;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.232-234
    • /
    • 2000
  • 최근들어 정보의 양이 날로 방대해 짐에 따라 이를 자동으로 분류해 줄 수 있는 무서 자동분류의 중요성이 널리 인식되고 있다. 문서 자동분류는 새로운 문서를 미리 정의된 부류로 대응시키는 일련의 작업을 말하며, 각종 패턴인식 기법들을 이용하여 시도되고 있다. 본 논문에서는 수많은 사용자들의 질의들을 분류하여 자동으로 응답하는 시스템에 적용할 수 있는 자동 질의 분류시스템을 제안한다. 실험은 500만명 이상이 사용하고 있는 한메일넷의 실제 사용자 질의를 수집하여 수행하였으며, 자동분류 방법으로는 다중 신경망을 이용하였다. 또한 효율적인 특징추출 기법과 결과 결합방법을 적용하여 분류의 정확율을 높이고자 하였다. 2204개의 실제 질의메일에 대한 실험결과, 91.1%까지의 정확율을 얻어 제안한 시스템이 실제 한메일넷의 자동응답 시스템에 효과적으로 적용될 수 있음을 알 수 있었다.

  • PDF

Decision support system on selection of classification method for remote sensing imagery (위성 영상 분류 기법 선정을 위한 의사 결정 지원 시스템)

  • 황보주원;유기윤;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.341-346
    • /
    • 2004
  • 본 연구에서는 사례기반추론(case-based reasoning)을 기본으로 하여 실무자의 분류 기법 또는 분류 구조 결정을 돕는 의사 결정 지원 시스템의 모델을 제시한다. 주요한 네 가지 고려 항목은 자료종류(dataset), 위치(location), 기후(climate), 그리고 분류항목(class)이며 사용자는 이들 네 항목에 대해 적합한 값을 선택하게 된다. 본 시스템은 색인화(indexing) 규칙에 따라 관계형 데이터베이스에 저장된 사례들을 추출하여 제시하며 사용자는 그 중 가장 높은 일치도를 보인 사례들을 참고할 수 있다. 본 연구에서는 위계구조를 통해 다양한 분류 조건을 스크린 상에서 선택할 수 있게 함으로써 사용자가 이에 내재된 논리를 분류 구조의 설계에 반영할 수 있게 한다. 또한 Statistics 기능을 통해 여러 사례의 항목당 분포를 사용자가 검토할 수 있게 함으로써 가장 적합한 사례를 의사결정 지원 시스템과의 피드백을 통해 찾아낼 수 있게 해준다. 이밖에 분류 조건을 변화 시켜가면서 상황의 변화를 참고할 수 있도록 Navigation 기능을 고안하였다.

  • PDF

Learning Rules for AMR of Collision Avoidance using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 자율이동로봇의 충돌 회피학습)

  • 반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.506-512
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modifY rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verifY the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF

Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules (신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계)

  • Lee, Jong-Min;Jung, Hong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

Development of Intelligent Diagnosis System using Fuzzy Classifier (퍼지 분류기를 이용한 지능형 차단 시스템 개발)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1785-1786
    • /
    • 2008
  • 본 논문에서는 저압 배선 진단 시스템 구축을 위한 퍼지-베이시안 분류기 기반 지능형 차단 시스템 개발을 목표로 한다. Time-Frequency Domain Reflectometry (TFDR)방법이 바탕이 되어 도선의 이상 상태를 측정하게 되며, 진단 부분에서 받은 정보를 능동적으로 해석하고 이상 유무에 따른 차단의 역할을 수행하는 시스템 개발이 최종 목표이다. 제안하고자 하는 분류 알고리즘은 퍼지-베이시안 분류 알고리즘을 중심으로 구성되며, 분류하고자 하는 도선의 이상상태인 damage, open 그리고 short에 대한 분류 기준을 마련하고자 한다. 또한, 실제 저압 배선에서 얻어진 데이터를 바탕으로 퍼지 분류 규칙의 생성 및 분류 알고리즘 생성을 구체화하여 좀 더 나은 성능의 분류기를 개발하고자 하는 것이 본 논문의 목표이다.

  • PDF

A Case Study on Personalized Patent Classification System (개인화 된 특허 분류 시스템 사례 연구)

  • Seo, Hyung-Kook;Choi, Kwang-Sun;Ahn, Han-Joon;Choi, Sung-Joon
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.241-245
    • /
    • 2006
  • 개인화 된 특허 분류 시스템은 기존의 자동 분류 및 특허 문서의 특성, 그리고 분류 체계의 개인화를 고려하여 접근해야 한다. 본 논문에서는 개인화 된 특허 분류 시스템을 구축하는데 있어 개인화된 분류 체계 및 모델의 구축, 특히 분류체계 구축에 있어서의 자동화에 초점을 두었다. 우리는 특히 분류체계 구축 자동화에 있어 특허 문서의 기존 분류체계인 IPC 및 문서 클러스터링을 활용하였다. 다음으로 이를 기반으로 한 구축 시스템 사례를 들었다. 구축 후 나타난 정성적 문제점을 분석해보고, 분석 결과를 향후 연구 방향으로 삼고자 한다.

  • PDF

BERT-based Hateful Text Filtering System - Focused on University Petition System (BERT 기반 혐오성 텍스트 필터링 시스템 - 대학 청원 시스템을 중심으로)

  • Taejin Moon;Hynebin Bae;Hyunsu Lee;Sanguk Park;Youngjong Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.714-715
    • /
    • 2023
  • 최근들어 청원 시스템은 사람들의 다양한 의견을 반영하고 대응하기 위한 중요한 수단으로 부상하고 있다. 그러나 많은 양의 청원 글들을 수작업으로 분류하는 것은 매우 시간이 많이 소요되며, 인적 오류가 발생할 수 있는 문제점이 존재한다. 이를 해결하기 위해 자연어처리(NLP) 기술을 활용한 청원 분류 시스템을 개발하는 것이 필요하다. 본 연구에서는 BERT(Bidirectional Encoder Representations from Transformers)[1]를 기반으로 한 텍스트 필터링 시스템을 제안한다. BERT 는 최근 자연어 분류 분야에서 상위 성능을 보이는 모델로, 이를 활용하여 청원 글을 분류하고 분류된 결과를 이용해 해당 글의 노출여부를 결정한다. 본 논문에서는 BERT 모델의 이론적 배경과 구조, 그리고 미세 조정 학습 방법을 소개하고, 이를 활용하여 청원 분류 시스템을 구현하는 방법을 제시한다. 우리가 제안하는 BERT 기반의 텍스트 필터링 시스템은 청원 글 분류를 자동화하고, 이에 따른 대응 속도와 정확도를 향상시킬 것으로 기대된다. 또한, 이 시스템은 다양한 분야에서 응용 가능하며, 대용량 데이터 처리에도 적합하다. 이를 통해 대학 청원 시스템에서 혐오성 발언 등 부적절한 내용을 사전에 방지하고 학생들의 의견을 효율적으로 수집할 수 있는 기능을 제공할 수 있다는 장점을 가지고 있다.

An Example-based Korean Standard Industrial and Occupational Code Classification (예제기반 한국어 표준 산업/직업 코드 분류)

  • Lim Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.594-601
    • /
    • 2006
  • Coding of occupational and industrial codes is a major operation in census survey of Korean statistics bureau. The coding process has been done manually. Such manual work is very labor and cost intensive and it usually causes inconsistent results. This paper proposes an automatic coding system based on example-based learning. The system converts natural language input into corresponding numeric codes using code generation system trained by example-based teaming after applying manually built rules. As experimental results performed with training data consisted of 400,000 records and 260 manual rules, the proposed system showed about 76.69% and 99.68% accuracy for occupational code classification and industrial code classification, respectively.

  • PDF

Classification Criteria for Reuse Library Systems (재사용 라이브러리 시스템에 대한 분류 기준)

  • Lee, Sung-Koo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.6
    • /
    • pp.41-50
    • /
    • 2006
  • In order to improve software development productivity and quality, reuse approaches and supporting library systems have been proposed. Library systems have applied various methods to classify, store, retrieve, and comprehend reusable components effectively. As the number of library systems grows, it is difficult to categorize, compare and analyze existing reuse libraries. In this paper, we present classification criteria for reuse library systems. A set of criteria is defined by integrating facet-based and attribute-based classification methods which encode the properties of a reusable component. In order to show the usefulness of the proposed classification criteria, representative library systems based on application domains, as well as component classification methods ore selected and reviewed. We then classify these library systems according to the proposed criteria.

  • PDF

Hierarchical Part Classification System based on Statistical Characteristic and Template (통계적 특징 및 템플리트 기반의 계층적 부품 분류 시스템)

  • 이영길;안성규;곽병덕;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.278-281
    • /
    • 1998
  • 본 논문에서는 다양한 모양의 부품 영상을 CCD카메라로 입력 받아 부품 영상에 포함된 부품의 내용 정보를 이용하여 부품을 분류하는 계층적 부품 분류 시스템을 구현하였다. 제안된 시스템은 부품 영상에 대해서 통계적 방법과 템플리트를 계층적으로 적용하여 부품을 분류하는 시스템이다. 2,000개의 부품 영상을 이용하여 실험한 결과, 84%의 분류율을 보였다.

  • PDF