• Title/Summary/Keyword: 분류함수

Search Result 897, Processing Time 0.027 seconds

Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier (퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법)

  • Shin, Sang-Ho;Han, Soowhan;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

분포함수 기반 Mass 함수 추정을 통한 Dempster-Shafer 영상융합

  • Lee Sang-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.311-314
    • /
    • 2006
  • 본 연구에서는 서로 다른 센서간의 영상 자료 융합을 위하여 Dempster-Shafer 기법을 제안하고 있다. 제안 된 Dempster-Shafer 기법은 불확실성의 최소 값을 대표하는 Belief 함수와 불확실성의 최대 값을 나타내는 Plausibility 함수를 사용한다. 이러한 두 함수의 차이는 Belief Interval 로 정의되며 이 값은 분석 대상에 존재하는 불확실 정도의 Measure 로 사용되며 Evidence Combination의 이론에 근거하여 서로 다른 센서간의 자료 융합이 가능하며 분류 결과로 클래스 맵 뿐 만 아니라 분류 결과에 대한 불확실성 정도를 나타내는 Belief 함수 값과 Plausibility 함수 값을 생성하여 분류 결과에 대한 보충적인 분석을 가능하게 하여 사용자의 분석 정확성을 증대 시킬 수 있다.

  • PDF

Learning Memebership Functions of Fuzzy Rules for Classification (분류를 위한 퍼지 규칙의 소속함수 학습)

  • 장민경;곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.449-451
    • /
    • 2003
  • 패턴 분류 문제에서 수치적 속성일 경우 퍼지 적용은 효과적인 결과를 보인다는 것은 많은 연구를 통해 알려졌다. 하지만 퍼지를 적용한 패턴분류의 결과는 소속함수의 모양과 개수에 따라 크게 영향을 받는다는 문제점을 가지고 있다. 따라서 이러한 문제점은 퍼지를 쉽게 응용분야에 적용시키지 못하는 원인이 된다. 따라서 본 논문에서는 자동으로 소속함수를 정의할 수 있는 소속함수 학습 방법을 제안한다. 제안한 방법1)은 Penalty연산과 Reward연산을 통해 소속함수가 학습되고 Coverage연산을 통해 소속함수 개수가 학습된다. 제안된 방법의 가능성을 확인하기 위해 벤치마크 데이터 중 Iris, Appendicitis, Breast Cancer를 사용하여 기존 방법과 비교한다.

  • PDF

Object Classification with Angular Margin Loss Function (각도 마진 손실 함수를 적용한 객체 분류)

  • Park, Seonji;Cho, Namik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.224-227
    • /
    • 2022
  • 객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.

  • PDF

Multi-pattern Classification Using Kernel Bagging-based Import Vector Machine (커널 Bagging기반의 Import Vector Machine을 이용한 다중 패턴 분류)

  • 최준혁;김대수;임기욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.275-278
    • /
    • 2002
  • Vapnik이 제안한 Support Vector Machine은 두 개의 부류를 갖는 데이터에 대한 분류에는 매우 좋은 성능을 보인다는 점은 이미 잘 알려져 있다. 하지만 부류의 개수가 3개 이상인 다중 패턴을 갖는 데이터에 대한 분류에는 SVM을 적용하기가 쉽지 않다. Support Vector Machine의 이러한 문제점을 해결하기 위하여 Zhu는 3개 이상의 부류를 갖는 데이터의 패턴 분류를 위하여 Import Vector Machine을 제안하였다. 이 모형은 Support Vector Machine을 이용하여 해결하기 어려운 다중 패턴 분류를 가능케 한다. Import Vector Machine은 커널 로지스틱 기반의 함수만을 사용하지만 본 논문에서는 다수의 커널 함수를 적용하여 가장 성능이 우수한 커널 함수를 찾아내어 최종 분류를 수행하게되는 bagging 기법을 적용하였다 제안하는 방법이 기존의 방법에 비해, 더욱 정확한 분류를 수행함을 실험 결과를 통해 확인한다.

한의학에서의 사상체질판별함수 개발에 관한 연구 (II) - 도수분석에 의한 변수선택 -

  • Kim, Gyu-Gon;Jo, Min-Hyeong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.69-77
    • /
    • 2004
  • 본 논문에서는 한방병원에서 사상체질분류검사설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질분류함수를 개발하기 위하여 데이터마이닝에서의 판별분석모형을 이용한다. 데이터 정제 과정에서 양질의 데이터를 확보하기 위한 기준은 상반되는 설문의 응답 패턴과 체질별 설문의 응답 비율을 이용하며, 변수선택의 기준은 도수분석의 비율차이검정과 선형판별함수의 계수를 이용한다.

  • PDF

한의학에서의 사상체질판별함수 개발에 관한 연구 (I) - 크론박 알파 계수에 의한 변수선택 -

  • Kim, Gyu-Gon;Choi, Seung-Bae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.61-68
    • /
    • 2004
  • 본 논문에서는 한방병원에서 사상체질분류검사설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질분류함수를 개발하기 위하여 데이터마이닝에서의 판별분석모형을 이용한다. 데이터 정제 과정에서 불성실한 응답자를 제거시키기 위한 기준은 상반되는 설문의 응답 패턴과 체질별 설문의 응답 비율을 이용하며, 변수선택의 기준은 상관분석의 크론박 알파 계수와 선형판별함수의 계수를 이용한다.

  • PDF

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Principal Component Analysis (적응적 성분분석 기법에 의한 RBF 신경망의 성능개선)

  • 조용현;윤중환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.475-477
    • /
    • 2000
  • 본 논문에서는 적응적 성분분석 기법을 이용하여 radial basis 함수 신경망의 학습시간과 분류성능을 개선한 새로운 기법을 제안하였다. 제안된 기법에서 적응적 성분분석 기법은 radial basis 함수 신경망의 은닉층 뉴런 개수와 중심값 설정을 위해 이용하였다. 제안된 기법의 radial basis 함수 신경망을 200명의 암환자를 2부류(초기와 악성)로 분류하는 문제에 적용하여 시뮬레이션한 결고, k-평균 군집화 알고리즘을 이용한 radial basis 함수 신경망과 비교할 때 학습시간과 시험 데이터의 분류에서 더욱 우수한 성능이 있음을 확인할 수 있었다.

  • PDF

Car Noise Cancellation by Using Spectral Subtraction Method Based on a New Speech/nonspeech Classification Function (새로운 음성/비음성 분류함수에 기반한 스펙트럼 차감법에 의한 차량잡음제거)

  • 박영식;이준재;이응주;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.994-1003
    • /
    • 1994
  • In this paper, a scheme of noise cancellation using spectral subreaction method with single input in an autombile noise environment is proposed. In order to remove the changing automonile noise components form the noisy speech signal, the noise of various states is analyzed and its characteristics are presented. For the decision of speech/nonspeech and the estimation of noise spectrum, a classification function is proposed on the basis of noise analysis. This function presents the precise decision of speech/nonspeech and the optimal estimation of noise spectrum with less computation. As the result of the estimation of noise spectrum by the proposed classification function, the clean speech signal is extracted from the noisy speech signal with high signal-to-ratio.

  • PDF

Motion Estimation Using Modified Cost Functions (변형된 비용 함수를 이용한 움직임 추정 기법)

  • 조한욱;서정욱;박재홍;정제창
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.111-114
    • /
    • 1997
  • 동영상 압축 알고리즘에서 움직임 추정기법은 매우 중요한 역할을 담당하는 반면, 수행시간이나 하드웨어 구현에 어려움이 많아 이를 개선하기 위한 알고리즘들이 개발되어 왔다. 본 논문에서는 적절한 화소 분류를 통해 우수한 화질과 적은 계산량, 간단한 하드웨어 구조를 가지는 새로운 움직임 추정기법을 제안한다. 기존의 1-비트 화소 분류 방법에서 변형된 새로운 비용 함수를 이용한 2-비트, 3-비트 화소 분류 방법과 2차 비용함수를 이용한 화소 분류 방법을 제안한다. 또한 여러 고속 움직임 추정 알고리즘과도 쉽게 연결하여 사용할 수 있으며 우수한 성능을 나타내는 것을 모의 실험을 통해 보였다.

  • PDF