• Title/Summary/Keyword: 분류시스템

Search Result 6,508, Processing Time 0.035 seconds

A Study on Nutritive Values and Salt Contents of Commercially Prepared Take-Out Boxed-Lunch In Korea (한국형 시판 도시락의 영양가 및 식염함량)

  • Kim, Bok-Hee;Lee, Eun-Wha;Kim, Won-Kyung;Lee, Yoon-Na;Kwak, Chung-Shil;Mo, Sumi
    • Journal of Nutrition and Health
    • /
    • v.24 no.3
    • /
    • pp.230-242
    • /
    • 1991
  • This research was conducted on the 10 take-out boxed-lunches commercially prepared in the department stores. chain stores. and the public railroad trains in Korea. Sampling was conducted from February 1990 to March 1990. Nutritive values and sodium contents of the 10 boxed-lunch samples are summarized as follows : 1) The average weight(percentage) of the cooked rice and the side dishes were 304.6g(49.4) and 312.4(506%), respectively. The weight of these samples were significantly heavier than that of Japanese style boxed-lunches. 2) The average number of the side dishes was 12. The average numbers of food items classified by the five food groups were 6.1 in protein food group, 0.3 in calcium food group. 6.0 in vitamin and mineral food group. 1.5 in carbohydrate food group, and 1.5 in oil and fat food group. 3) They contained on the average 840.7kcal of energy, 38.9g of protein, 22.7g of fat, 120.4g of carbohydrate. 300.8mg of calcium. 410.8mg of phosphours, 6.61 mg of iron. 219.8 R.E. of vitamin A, 0.46mg of thiamin, 0.67mg of riboflavin, 10.5mg of niacin, 27.5mg of ascorbic acid. Thus. except vitamin t the content of all the nutrients were higher than the value of 1/3 of the RDA for adults. 4) The high priced group(group 2) had more protein, calcuim. iron and niacin contents than the cheaper group(group 1). Probably, it's because the group 2 had more animal foods than the group 1. 5) The average energy content per unit price(100 won) was 37.3kcal and the average protein content per unit price(100 won) was 1.64g. Korena style boxed-lunches had higher energy and protein contents per unit price than Japanese style, and the group 1 higher than the group 2. 6) The average energy Proportions of Protein, carbohydrate. and fat were 18.3%, 57.4%, and 24.3%, respectively. These proportions are good enough. 7) Frequency of cooking methods for the side dishes were found in the decreasing order : pan-frying, frying, braising, seasoning, kimchi, grilling, pickling, stir-frying, steaming and fermenting. Generally simple cooking methods were used, thus the menus were lack or varieties. 8) Frequency of colors for the side dishes were found in the decreasing order : red, brown. yellow, green, black, white. Too much red pepper was used. 9) The average capacity of the containers for the staples and the side dishes were 468.1ml and 590.6ml, respectively. And the containers could not keep the food items well seperated. 10) The average contensts of sodium and salt were 2.287mg and 5.76g, in the range of 1, 398mg to 3, 489mg and 3.53g to 8.80g, respectively. These are much higher values than the recommended amount of salt.

  • PDF

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.

The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining (데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석)

  • Lee, Su Hyun;Park, Jung Min;Lee, Hyoung Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.111-131
    • /
    • 2015
  • There are only a handful number of research conducted on pattern analysis of corporate distress as compared with research for bankruptcy prediction. The few that exists mainly focus on audited firms because financial data collection is easier for these firms. But in reality, corporate financial distress is a far more common and critical phenomenon for non-audited firms which are mainly comprised of small and medium sized firms. The purpose of this paper is to classify non-audited firms under distress according to their financial ratio using data mining; Self-Organizing Map (SOM). SOM is a type of artificial neural network that is trained using unsupervised learning to produce a lower dimensional discretized representation of the input space of the training samples, called a map. SOM is different from other artificial neural networks as it applies competitive learning as opposed to error-correction learning such as backpropagation with gradient descent, and in the sense that it uses a neighborhood function to preserve the topological properties of the input space. It is one of the popular and successful clustering algorithm. In this study, we classify types of financial distress firms, specially, non-audited firms. In the empirical test, we collect 10 financial ratios of 100 non-audited firms under distress in 2004 for the previous two years (2002 and 2003). Using these financial ratios and the SOM algorithm, five distinct patterns were distinguished. In pattern 1, financial distress was very serious in almost all financial ratios. 12% of the firms are included in these patterns. In pattern 2, financial distress was weak in almost financial ratios. 14% of the firms are included in pattern 2. In pattern 3, growth ratio was the worst among all patterns. It is speculated that the firms of this pattern may be under distress due to severe competition in their industries. Approximately 30% of the firms fell into this group. In pattern 4, the growth ratio was higher than any other pattern but the cash ratio and profitability ratio were not at the level of the growth ratio. It is concluded that the firms of this pattern were under distress in pursuit of expanding their business. About 25% of the firms were in this pattern. Last, pattern 5 encompassed very solvent firms. Perhaps firms of this pattern were distressed due to a bad short-term strategic decision or due to problems with the enterpriser of the firms. Approximately 18% of the firms were under this pattern. This study has the academic and empirical contribution. In the perspectives of the academic contribution, non-audited companies that tend to be easily bankrupt and have the unstructured or easily manipulated financial data are classified by the data mining technology (Self-Organizing Map) rather than big sized audited firms that have the well prepared and reliable financial data. In the perspectives of the empirical one, even though the financial data of the non-audited firms are conducted to analyze, it is useful for find out the first order symptom of financial distress, which makes us to forecast the prediction of bankruptcy of the firms and to manage the early warning and alert signal. These are the academic and empirical contribution of this study. The limitation of this research is to analyze only 100 corporates due to the difficulty of collecting the financial data of the non-audited firms, which make us to be hard to proceed to the analysis by the category or size difference. Also, non-financial qualitative data is crucial for the analysis of bankruptcy. Thus, the non-financial qualitative factor is taken into account for the next study. This study sheds some light on the non-audited small and medium sized firms' distress prediction in the future.

The Market Segmentation of Coffee Shops and the Difference Analysis of Consumer Behavior: A Case based on Caffe Bene (커피전문점의 시장세분화와 소비자행동 차이 분석 : 카페베네 사례를 중심으로)

  • Yu, Jong-Pil;Yoon, Nam-Soo
    • Journal of Distribution Science
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2011
  • This study provides analysis of the effectiveness of domestic marketing strategies of the Korean coffee shop "Caffe Bene". It bases its evaluation on statistical outputs of 'choice attributes,' "market segmentation," demographic characteristics," and "satisfaction differences." The results are summarized in four points. First, five choice attributes were extracted from factor analysis: price, atmosphere, comfort, taste, and location; these are related to coffee shop selection behavior. Based on these five factors, cluster analysis was conducted, with statistical results classifying customers into three major groups: atmosphere oriented; comfort oriented; and taste oriented. Second, discriminant analysis tested cluster analysis and showed two discriminant functions: location and atmosphere. Third, cross-tabulation analysis based on demographic characteristics showed distinctive demographic characteristics within the three groups. Atmosphere oriented group, early-20s, as women of all ages was found to be 'walking down the street 'and 'through acquaintances' in many cases, as the cognitive path, and mostly found the store through 'outdoor advertising', and 'introduction'. Comfort oriented group was mainly women who are students in their early twenties or professionals, and appeared as a group to be very loyal because of high recommendation to other customers compared to other groups. Taste oriented group, unlike the other group, was mainly late-20s' college graduates, and was confirmed, as low loyalty, with lower recommendation activity. Fourth, to analyze satisfaction differences, one-way ANOVA was conducted. It shows that groups which show high satisfaction in the five main factors also show high menu satisfaction and high overall satisfaction. This results show that segmented marketing strategies are necessary because customers are considering price, atmosphere, comfort, taste, location when they choose coffee shop and demographics show different attributes based on segmented groups. For example, atmosphere oriented group is satisfied with shop interior and comfort while dissatisfied with price because most of the customers in this group are early 20s and do not have great financial capability. Thus, price discounting marketing strategies based on individual situations through CRM system is critical. Comfort oriented group shows high satisfaction level about location and shop comfort. Also, in this group, there are many early 20s female customers, students, and self-employed people. This group customers show high word of mouth tendency, hence providing positive brand image to the customers would be important. In case of taste oriented group, while the scores of taste and location are high, word of mouth score is low. This group is mainly composed of educated and professional many late 20s customers, therefore, menu differentiation, increasing quality of coffee taste and price discrimination is critical to increase customers' satisfaction. However, it is hard to generalize the results of study to other coffee shop brand, because this study have researched only one domestic coffee shop, Caffe Bene. Thus if future study expand the scope of locations, brands, and occupations, the results of the study would provide more generalizable results. Finally, research of customer satisfactions of menu, trust, loyalty, and switching cost would be critical in the future study.

  • PDF

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

The Cognitive Performance, Emotional and Behavioral Problems of the Children with ADHD Showing the Difference between Visual and Auditory Attention (시각 주의력과 청각 주의력의 차이를 보이는 주의력 결핍.과잉활동장애 아동의 인지기능과 정서 및 행동 문제)

  • Son, Jung Woo
    • Korean Journal of Biological Psychiatry
    • /
    • v.13 no.2
    • /
    • pp.70-81
    • /
    • 2006
  • Objective : The purpose of this study was to investigate the differences of the cognitive performance, emotional and behavioral problems among the attention-deficit/hyperactivity disorder(ADHD) groups that show the difference between visual and auditory attention. Method : Using 'ADHD Diagnostic System(ADS)', visual attention and auditory attention of 98 children diagnosed as ADHD were measured. According to the omission and commission error of ADS, they were divided into three groups ; 1) the group whose each visual omission and commission error scores were higher than each auditory omission and commission error scores(VV group), 2) the group whose each auditory omission and commission error scores were higher than each visual omission and commission error scores(AA group), 3) the group that was the rest of VV and AA group(M group). And the results of both the subscales of Korean Educational Development Institute-Wechsler Intelligence Scale for Children(KEDI-WISC) and the subscales of Korean Child Behavior Checklist(K-CBCL) among three groups were compared. Finally, the correlation between the visual omission, visual commission, auditory omission, auditory commission error and the results of KEDI-WISC, K-CBCL were investigated. Results : The results were as follows ; 1) In 98 ADHD children, the number of VV group(N=56) was higher than that of AA (N=10) and M group (N=32). 2) All mean scores of the subscales of KEDI-WISC of VV group were higher than those of M and AA group. The score of verbal IQ(p=.039) of VV group was significantly higher than that of AA group and the scores of block design(p=.015), Kaufman's factor 2(p=.045), performance IQ(p=.004) were significantly higher than those of M group. The score of full IQ(p=.004) were significantly higher than that of M and AA group. 3) The mean scores of all K-CBCL subscales of VV group were higher than those of M and AA group, except the score of Somatic complaint subscale. The score of Social subscale(p=.041) of VV group was significantly higher than that of AA group. The score of Withdrawn subscale(p=.021) of AA group was significantly higher than that of VV group. 4) There were no significant correlation between the scores of visual omission/commission error and those of each subscale of KEDI-WISC. But, there were many significant correlations between the scores of auditory omission/commission error and those of each subscale of KEDI-WISC. 5) There were significant correlation between the score of the visual omission error and that of Thought problem subscale(r=.205, p=.043) of K-CBCL. There were significant correlation between the scores of the auditory omission error and those of Social subscale(r=-.319, p=.001), Social problems subscale(r=.206, p=.042), Thought problem subscale(r=.235, p=.021). Finally, there were significant correlation between the scores of auditory commission error and those of Social subscale(r=-.241, p=.017), Thought problem subscale(r=.235, p=.020). Conclusion : The ADHD children whose auditory attention ability were higher than visual attention ability had relatively better cognitive performance and less emotional/behavioral problems than the others. The more comprehensive experiment will be needed about the cognitive performance, emotion and behavior problems of the ADHD children showing the difference between visual and auditory attention.

  • PDF

The Present State of Domestic Acceptance of Various International Conventions for the Prevention of Marine Pollution (해양오염방지를 위한 각종 국제협약의 국내 수용 현황)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.293-300
    • /
    • 2006
  • Domestic laws such as Korea Marine Pollution Prevention Law (KMPPL) which has been mae and amended according to the conclusions and amendments of various international conventions for the prevention a marine pollution such as MARPOL 73/78 were reviewed and compared with the major contents of the relevant international conventions. Alternative measures for legislating new laws or amending existing laws such as KMPPL for the acceptance of major contents of existing international conventions were proposed. Annex VI of MARPOL 73/78 into which the regulations for the prevention of air pollution from ship have been adopted has been recently accepted in KMPPL which should be applied to ships which are the moving sources of air pollution at sea rather tlnn in Korea Air Environment Conservation Law which should be applied to automobiles and industrial installations in land. The major contents of LC 72/95 have been accepted in KMPPL However, a few of substances requiring special care in Annex II of 72LC, a few of items in characteristics and composition for the matter in relation to criteria governing the issue of permits for the dumping of matter at sea in Annex III of 72LC, and a few of items in wastes or other matter that may be considered for dumping in Annex I of 96 Protocol have not been accepted in KMPPL yet. The major contents of OPRC 90 have been accepted in KMPPL. However, oil pollution emergency plans for sea ports and oil handling facilities, and national contingency plan for preparedness and response have not been accepted in KMPPL yet. The waste oil related articles if Basel Convention, which shall regulate and prohibit transboundary movement of hazardous waste, should be accepted in KMPPL in order to prevent the transfer if scrap-purpose tanker ships containing oil/water mixtures and chemicals remained on beard from advanced countries to developing and/or underdeveloped countries. International Convention for the Control if Harmful Anti-Fouling Systems on the Ships should be accepted in KMPPL rather tlnn in Korea Noxious Chemicals Management Law. International Convention for Ship's Ballast Water/Sediment Management should be accepted in KMPPL or by a new law in order to prevent domestic marine ecosystem and costal environment from the invasion of harmful exotic species through the discharge of ship's ballast water.

  • PDF

The Effect of Recombinant Human Epidermal Growth Factor on Cisplatin and Radiotherapy Induced Oral Mucositis in Mice (마우스에서 Cisplatin과 방사선조사로 유발된 구내염에 대한 재조합 표피성장인자의 효과)

  • Na, Jae-Boem;Kim, Hye-Jung;Chai, Gyu-Young;Lee, Sang-Wook;Lee, Kang-Kyoo;Chang, Ki-Churl;Choi, Byung-Ock;Jang, Hong-Seok;Jeong, Bea-Keon;Kang, Ki-Mun
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • Purpose: To study the effect of recombinant human epidermal growth factor (rhEGF) on oral mucositis induced by cisplatin and radiotherapy in a mouse model. Materials and Methods: Twenty-four ICR mice were divided into three groups-the normal control group, the no rhEGF group (treatment with cisplatin and radiation) and the rhEGF group (treatment with cisplatin, radiation and rhEGF). A model of mucositis induced by cisplatin and radiotherapy was established by injecting mice with cisplatin (10 mg/kg) on day 1 and with radiation exposure (5 Gy/day) to the head and neck on days $1{\sim}5$. rhEGF was administered subcutaneously on days -1 to 0 (1 mg/kg/day) and on days 3 to 5 (1 mg/kg/day). Evaluation included body weight, oral intake, and histology. Results: For the comparison of the change of body weight between the rhEGF group and the no rhEGF group, a statistically significant difference was observed in the rhEGF group for the 5 days after day 3 of. the experiment. The rhEGF group and no rhEGF group had reduced food intake until day 5 of the experiment, and then the mice demonstrated increased food intake after day 13 of the of experiment. When the histological examination was conducted on day 7 after treatment with cisplatin and radiation, the rhEGF group showed a focal cellular reaction in the epidermal layer of the mucosa, while the no rhEGF group did not show inflammation of the oral mucosa. Conclusion: These findings suggest that rhEGF has a potential to reduce the oral mucositis burden in mice after treatment with cisplatin and radiation. The optimal dose, number and timing of the administration of rhEGF require further investigation.