• Title/Summary/Keyword: 분류기 알고리즘

Search Result 599, Processing Time 0.031 seconds

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI (BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화)

  • Aliyu, Ibrahim;Mahmood, Raja Majid;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1171-1180
    • /
    • 2019
  • Emotion is a psycho-physiological process that plays an important role in human interactions. Affective computing is centered on the development of human-aware artificial intelligence that can understand and regulate emotions. This field of study is also critical as mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction are associated with emotion. Despite the efforts in emotions recognition and emotion detection from nonstationary, detecting emotions from abnormal EEG signals requires sophisticated learning algorithms because they require a high level of abstraction. In this paper, we investigated LSTM hyperparameters for an optimal emotion EEG classification. Results of several experiments are hereby presented. From the results, optimal LSTM hyperparameter configuration was achieved.

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

Real-time Violence Video Detection based on Movement Change Characteristics (움직임 변화 특성기반의 실시간 폭력영상 검출)

  • Kim, Kwangsoo;Kim, Ungtae;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.234-239
    • /
    • 2017
  • A real-time violence detection algorithm based on a new descriptor using the magnitude and direction changes of movement in images is proposed. The descriptor was developed from the observation that the changes of violent actions are much larger than those of normal movements. Descriptor feature vectors consisting of descriptor values during several frames are obtained and these are inputs to SVM(Support Vector Machine) classifier for discriminating violence actions from and non-violence actions. Comparison experiments between the ViF(Violent Flow) and the proposed algorithm were conducted with three different types of datasets. The experimental results show that the proposed algorithm outperforms the ViF in every case.

Improvement of Face Recognition Speed Using Pose Estimation (얼굴의 자세추정을 이용한 얼굴인식 속도 향상)

  • Choi, Sun-Hyung;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.677-682
    • /
    • 2010
  • This paper addresses a method of estimating roughly the human pose by comparing Haar-wavelet value which is learned in face detection technology using AdaBoost algorithm. We also presents its application to face recognition. The learned weak classifier is used to a Haar-wavelet robust to each pose's feature by comparing the coefficients during the process of face detection. The Mahalanobis distance is used to measure the matching degree in Haar-wavelet selection. When a facial image is detected using the selected Haar-wavelet, the pose is estimated. The proposed pose estimation can be used to improve face recognition speed. Experiments are conducted to evaluate the performance of the proposed method for pose estimation.

Intelligent Shape Analysis Using Multi-sensory Interaction (다중 감각 인터랙션을 이용한 지능형 형상 분석)

  • Kim, Jeong-Sik;Kim, Hyun-Joong;Choi, Soo-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.139-142
    • /
    • 2006
  • 본 논문에서는 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 다중 감각 기반의 지능형 3차원 형상 분석 방법을 소개한다. 지능형 형상 분석 방법은 3차원 모델의 구조에 대한 보다 상세한 정보를 제공한다. 특히 의료 분야에 사용될 경우 전문가의 개입을 최소화하여 질병 진단 및 치료 등에 사용될 수 있다. 본 연구에서는, MRI나 CT 영상으로부터 생성된 3차원 매개변수형 모델을 이용하여 유사 모델 집단을 대표하는 통계 형상을 구축한 후, SVM (Support Vector Machine) 학습 알고리즘을 이용하여 두 집단간 형상 차이를 분석한다. 3차원 형상에 대한 신속한 시각적 이해와 직관적 조작감은 물체 표면의 형상 변화를 분석하는데 효과적으로 사용될 수 있다. 본 논문에서는 물체 조작 및 관찰 등의 작업을 수행할 때, 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 인터랙션 기법을 사용하여 공간감과 깊이감을 향상시켜 형상 분석 결과를 효과적으로 분석한다. 본 연구에서는 해마, 관상 동맥, 뇌와 같은 인체 장기를 실험 데이터로 사용하여 제안한 SVM 기반의 분석 방법과 인터랙션 환경의 성능을 평가한다. 본 연구에서 구현한 SVM 기반 이진 분류기는 두 집단간 형상 차이를 효과적으로 분석하며, 또한 다중 감각 인터랙션은 사용자가 분석 결과를 관찰하고 카메라 및 형상을 효율적으로 조작하는 데 도움을 준다.

  • PDF

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 악성 안드로이드 모바일 앱의 최적특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.164-167
    • /
    • 2019
  • 모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 본 논문에서는 다양한 특징점 추출 및 기계학습을 활용하여 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 통해 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97퍼센트로 정확도가 개선되었고 오탐률도 1.6%로 성능이 개선되었다.

Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis (유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템)

  • Lee, Dae-Jong;Cho, Jae-Hoon;Yun, Jong-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.380-387
    • /
    • 2010
  • For the fault diagnosis of three-phase induction motors, we propose a diagnosis algorithm based on mutual information and linear discriminant analysis (LDA). The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by mutual information As the next step, feature extraction is performed by LDA, and then diagnosis is evaluated by k-NN classifier. The results to verify the usability of the proposed algorithm showed better performance than various conventional methods.

Implementation of Multi-frame Medical Image Labeling Web Application for Swallowing Disorder Analysis (삼킴장애 분석을 위한 멀티프레임 의료영상 라벨링 웹 애플리케이션 구현)

  • Dong-Wook Lim;Chung-sub Lee;Si-Hyeong Noh;Chul Park;Min Su Kim;Hee-Kyung Moon;Chang-Won Jeong
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.8-10
    • /
    • 2023
  • 삼킴장애는 음식물이 입에서 식도로 가지않고 걸리거나 기도(Trachea)로 흡입되는 문제를 갖는 상태이다. 특히 노인이나 신경계 질환을 앓는 환자의 경우 기도로 흡입된 음식덩이가 폐렴을 일으키고 결국에는 사망으로 이어지기에 적절한 치료와 관리가 요구된다. 보통 영상으로 판단할 수 있는 삼킴단계는 구강준비단계(Oral Preparatory Phase), 구강단계(Oral Phase), 인두단계(Pharyngeal Phase), 식도단계(Esophageal Phase) 4가지로 분류하고 삼킴장애는 침습(Penetration)과 흡인(Aspiration)으로 크게 2가지로 분류한다. 본 논문에서는 이러한 6가지 클래스를 가지는 삼킴장애 환자 비디오 파일을 라벨링하기 위한 웹 애플리케이션을 제안한다. 이를 구현하기 위해서 대용량 멀티프레임 이미지를 수신해서 분리하여 저장하도록 개발하였다. 또한 음식덩이를 정교하게 분할할 수 있도록 GrabCut 알고리즘을 적용하여 라벨링할 수 있도록 하였다. 차후 라벨러와 전문의 간의 협업이 가능하도록 라벨링 데이터의 상태를 관리할 수 있도록 개발하고자 한다.

A Study on a Diagnosis System for HSR Turnout Systems (II) (고속철도 분기기 시스템 진단 시스템에 관한 연구(II))

  • Kim, Youngseok;Yoon, Yeonjoo;Back, Inchul;Ryu, Youngtae;Han, Hyunsu;Hwang, Ankyu;Kang, Hyungseok;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.223-233
    • /
    • 2017
  • The railway turnout system is one of the most important systems that set train routes. Turnout system integrity should be guaranteed for robust train operation. To diagnose the turnout system status, LVDT and accelerometers are installed on a turnout system in a high speed line. The LVDT and accelerometers produce signals containing physical meaning of the turnout systems. The LVDT produces the displacement of the rail gauge and vibration when point moving or a train passes on turnout systems and the accelerometer produces impact forces induced by wheel sets. We performed data extraction from the measured signals and parameterized the extracted signals into meaningful quantities. The parameters are used for classifying whether the turnout status is normal. We proposed two methods for the classification, one uses probabilistic distribution and the other artificial neuron networks. The probabilistic distribution is used for the parameter being classified by the quantities and the artificial neuron networks for the form classification. Finally, we show how to learn the normal status of a turnout system.