Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.133-153
/
2023
In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.
Proceedings of the Korean Information Science Society Conference
/
2008.06a
/
pp.174-178
/
2008
P2P를 포함하는 인터넷 애플리케이션 트래픽의 보다 빠르고 정확한 분류는 최근 학계의 중요한 이슈 중 하나이다. 본 논문에서는 기존의 전통적인 분류방법으로 대표되는 port 번호 및 payload 정보를 이용하는 방법론의 구조적 한계점을 극복하는 새로운 대안으로써, 이진 분류기인 SVM과 단일클래스 SVM을 계층적으로 결합한 다중 클래스 SVM을 구축하여 인터넷 애플리케이션 트래픽 분류를 수행하였다. 제안된 시스템은 이진 분류기인 SVM으로 P2P 트래픽과 non-P2P 트래픽을 빠르게 분류하는 첫 번째 계층, 3개의 단일클래스 SVM을 기반으로 P2P 트래픽들을 파일공유, 메신저, TV로 분류하는 두 번째 계층, 그리고 전체 16가지의 애플리케이션 트래픽별로 세분화 분류하는 세 번째 계층으로 구성된다. 제안된 시스템은 flow 기반의 트래픽 정보를 수집하여 인터넷 애플리케이션 트래픽을 coarse 혹은 fine하게 분류함으로써 효율적인 시스템의 자원 관리, 안정적인 네트워크 환경의 지원, 원활한 bandwidth의 사용, 그리고 적절한 QoS를 보장하였다. 또한, 새로운 애플리케이션 트래픽이 추가되더라도 전체 시스템을 재학습 시킬 필요 없이 새로운 애플리케이션 트래픽만을 추가 학습함으로써 시스템의 점증적 갱신 및 확장성에도 기여하였다. 평가항목인 recall과 precision에서 만족스러운 수치 등을 실험을 통하여 확인함으로써 제안된 시스템의 성능을 검증하였다.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.11
/
pp.75-83
/
1999
We propose a PfSGA(parameter-free species genetic algorithm) to learn the topological structure of MLP classifiers being adequate to given applications. The PfSGA is a combinational method of SGA(species genetic algorithm) and PfGA(parameter-free genetic algorithm). In SGA, we divide the total search space into several subspaces(species) according to the number of hidden units, and reduce the unnecessary search by eliminating the low promising species from the evolutionary process. However the performances of SGA classifiers are readily affected by the values of parameters such as mutation ratio and crossover ratio. In this paper, therefore, we combine SGA with PfGA, for which it is not necessary to determine the learning parameters. Experimental results on benchmark data and sign language words show that PfSGA can reduce the learning time of SGA and is not affected by the selection parameter values on structural learning. The results also show that PfSGA is more efficient than the exisiting methods in the aspect of misclassification ratio, learning rate, and complexity of MLP structure.
We present a method to recognize hand gestures using skeletal joint data obtained from Microsoft's Kinect sensor. We propose a combination feature of multi-angle histograms robust to orientation variations to represent the observation sequence of skeletons. The proposed feature efficiently represents the orientation variations of gestures that can be occurred according to person or environment by combining the multiple angle histograms with various angular-quantization levels. The gesture represented as combination of multi-angle histograms and random decision forest classifier improve the recognition performance. We conduct the experiments in hand gesture dataset obtained from a kinect sensor and show that our method outperforms the other methods by comparing the recognition performance.
Park, Min-Wook;Peng, Shao-Hu;Saipullah, Khairul Muzzammil;Kim, Deok-Hwan
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.480-483
/
2010
환자의 흉부 CT 영상을 이용하여 폐 영역의 질환을 진단하는 컴퓨터 조력 진단(CAD) 시스템은 질감 특징을 이용한다. 질환의 질감 특징 추출은 매우 중요하다. 질감 특징 추출은 폐 질환을 분석하기 위한 좋은 방법 중의 하나이기 때문이다. 본 논문에서는 폐기종 질환을 판별하기 위해 명암도와 CS-LBP를 결합한 질감 특징 추출 방법을 제안한다. 입력된 흉부 CT 영상은 몇 단계의 전처리 과정을 거치고 제안한 방법을 통해 질감 특징 추출을 하게 된다. 그리고 분류기에 의해 폐기종을 분류해 질환을 판별하게 된다. 실험 결과에서는 제안한 방법이 현존하는 방법 중 가장 좋은 성능을 보이는 GLLBP보다 더 좋은 성능을 보여준다.
In this paper. we propose an effective mask estimation scheme for missing-feature reconstruction in order to achieve robust speech recognition under unknown noise environments. In the previous work. colored noise is used for training the mask classifer, which is generated from the entire frequency Partitioned signals. However it gives a limited performance under the restricted number of training database. To reflect the spectral events of more various background noise and improve the performance simultaneously. a new Bayesian classifier for mask estimation is proposed, which works independent of other frequency bands. In the proposed method, we employ the colored noise which is obtained by combining colored noises generated from each frequency band in order to reflect more various noise environments and mitigate the 'sparse' database problem. Combined with the cluster-based missing-feature reconstruction. the performance of the proposed method is evaluated on a task of noisy speech recognition. The results show that the proposed method has improved performance compared to the Previous method under white noise. car noise and background music conditions.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.757-759
/
2005
Henry의 지문분류법이 창안된 후, 지문분류에 대한 여러 가지 접근 방법이 연구되고 있다. 특이점에 의한 분류는 가장 많이 연구되고 있는 방법이지만, 지문영상의 품질에 민감하기 때문에 정확한 분류가 쉽지 않다. 의사 융선은 특이점과 더불어 지문을 분류하기 위한 특징으로, 특이점의 불완전함을 보완하는데 이용한다. 본 논문에서는 나이브 베이즈 분류기를 이용하여 특이점과 의사 융선 정보의 확률적인 분류 방법을 제안한다. NIST DB 4에 대해 제안하는 방법을 실험한 결과 5클래스 분류에 대해 $85.4\%$의 분류율을 획득하였으며, 제안하는 방법이 신경망, 최근접 이웃에 의한 분류에 비해 더 빠르다는 것을 확인하였다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.288-293
/
1999
일반적으로 두 개의 명사가 결합하여 하나의 명사 기능을 하는 어구를 복합명사라고 한다. 한국어는 복합명사 내의 명사를 붙여볼 수도 있고 띄어쓸 수도 있으므로 복합명사의 형태적 분석에 많은 어려움이 있다. 이 연구에서는 각 명사의 복합명사 결합을 최대한 제약하여 문법검사기에서 복합명사와 관련된 오류의 발생을 최소화할 수 있는 방범을 개발했다. 이 논문에서 복합명사 분석 기능을 제약하는 방법으로 형태적 제약 방법과 의미정보에 따라 복합명사의 결합관계를 제약하는 방법을 이용했다. 어휘 정보만으로 복합명사를 분석하면 의미관계에 의한 오류는 찾기 어려우므로 복합명사의 구조적 결합관계와 의미 결합관계를 밝혀 복합명사를 잘못 분석하는 문제점을 극복한다. 복합명사의 결합제약은 명사의 왼쪽과 오른쪽에 올 수 있거나 올 수 없는 명사를 의미, 형태적 특성과 명사가 나타나는 분포(distribution)에 따라 분류하여 규칙베이스화하였다. 의미정보를 이용한 복합명사 결합제약 알고리즘도 구현하였다.
In this paper, we propose a new cardiac disorder classification method using an support vector machine (SVM) to combine hidden Markov model (HMM) and murmur existence information. Using cepstral features and the HMM Viterbi algorithm, we segment input heart sound signals into HMM states for each cardiac disorder model and compute log-likelihood (score) for every state in the model. To exploit the temporal position characteristics of murmur signals, we divide the input signals into two subbands and compute murmur probability of every subband of each frame, and obtain the murmur score for each state by using the state segmentation information obtained from the Viterbi algorithm. With an input vector containing the HMM state scores and the murmur scores for all cardiac disorder models, SVM finally decides the cardiac disorder category. In cardiac disorder classification experimental results, the proposed method shows the relatively improvement rate of 20.4 % compared to the HMM-based classifier with the conventional cepstral features.
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.7
/
pp.1243-1248
/
2008
As development in technology of bioinformatics recently mates it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. In this thesis, we used CDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer. It analyzed and compared performance of each of the experiment result using existing DT, NB, SVM and multi-perceptron neural network classifier combined the similar scale combination method after constructing class classification model by extracting significant gene list with a similar scale combination method proposed in this paper through normalization. Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) represented the accuracy of 98.84%, which show that it improve classification performance than case to experiment using other classifier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.