• Title/Summary/Keyword: 분류구간

Search Result 682, Processing Time 0.026 seconds

A study on pitch detection for RUI emotion classification based on voice (RUI용 음성신호기반의 감정분류를 위한 피치검출기에 관한 연구)

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.421-424
    • /
    • 2015
  • 컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.

  • PDF

A study on Gabor Filter Bank-based Feature Extraction Algorithm for Analysis of Acoustic data of Emergency Rescue (응급구조 음향데이터 분석을 위한 Gabor 필터뱅크 기반의 특징추출 알고리즘에 대한 연구)

  • Hwang, Inyoung;Chang, Joon-Hyuk
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1345-1347
    • /
    • 2015
  • 본 논문에서는 응급상황이 신고되는 상황에서 수보자에게 전달되는 신고자의 주변음향신호로부터 신고자의 주변상황을 추정하기 위하여 음향의 주파수적 특성 및 변화특성의 모델링 성능이 뛰어난 Gabor 필터뱅크 기반의 특징벡터 추출 기술 및 분류 성능이 뛰어난 심화신경망을 도입한다. 제안하는 Gabor 필터뱅크 기반의 특징벡터 추출 기법은 비음성 구간 검출기를 통하여 음성/비음성을 구분한 후에 비음성 구간에서 23차의 Mel-filter bank 계수를 추출한 후에 이로부터 Gabor 필터를 이용하여 주변상황 추정을 위한 특징벡터를 추출하고, 이로부터 학습된 심화신경망을 통하여 신고자의 장소적 정보를 추정한다. 제안된 기법은 여러 가지 시나리오 환경에서 평가되었으며, 우수한 분류성능을 보였다.

Comparison of Automatic Score Range Prediction of Korean Essays Using KoBERT, Naive Bayes & Logistic Regression (KoBERT, 나이브 베이즈, 로지스틱 회귀의 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Cha, Junwoo;Yi, Yumi
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.501-504
    • /
    • 2021
  • 한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.

Event Detection and Summarization of TV Golf Broadcasting Program using Analyzed Multi-modal Information (멀티 모달 정보 분석을 이용한 TV 골프 방송 프로그램에서의 이벤트 검출 및 요약)

  • Nam, Sang-Soon;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 영상 정보와 오디오 정보 분석을 이용하여 TV 골프 방송 프로그램에서 중요 이벤트 구간을 검출하고 요약 하는 알고리즘을 제안한다. 제안하는 알고리즘에서는 입력되는 TV 골프 동영상을 영상 신호와 오디오 신호로 분리한 후에, 연속적인 오디오 스트림을 내용 기반의 오디오 구간으로 분류한 뒤 오디오 이벤트 구간을 검출하고, 이와 병렬적으로 영상정보에서 선수들의 플레이 장면을 검출한다. 플레이 장면 검출에 있어서는 방송 환경이나 날씨 등의 변화하는 다양한 조건에 대해 플레이 장면에 대한 오프라인 모델과 함께 경기 내에서 발생한 온라인 모델에 대한 학습을 혼합 적용함으로써 검출 성능을 높였다. 오디오 신호로부터 관중들의 박수소리와 스윙 사운드를 통해 검출된 오디오 이벤트와 플레이 장면은 이벤트 장면 검출 및 요약본 생성을 위해 사용된다. 제안된 알고리즘은 멀티 모달 정보를 이용하여 이벤트 구간 검출을 수행함으로써 중요 이벤트 구간 검출의 정확도를 높일 수 있었고, 검출된 이벤트 구간에 대한 요약본 생성을 통해 골프 경기를 시청하는 사용자가 원하는 부분을 빠르게 브라우징하여 시청하는 것이 가능하여 높은 사용자 만족도를 얻을 수 있었다.

  • PDF

Sleep/Wake Dynamic Classifier based on Wearable Accelerometer Device Measurement (웨어러블 가속도 기기 측정에 의한 수면/비수면 동적 분류)

  • Park, Jaihyun;Kim, Daehun;Ku, Bonhwa;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.126-134
    • /
    • 2015
  • A sleep disorder is being recognized as one of the major health issues related to high levels of stress. At the same time, interests about quality of sleep are rapidly increasing. However, diagnosing sleep disorder is not a simple task because patients should undergo polysomnography test, which requires a long time and high cost. To solve this problem, an accelerometer embedded wrist-worn device is being considered as a simple and low cost solution. However, conventional methods determine a state of user to "sleep" or "wake" according to whether values of individual section's accelerometer data exceed a certain threshold or not. As a result, a high miss-classification rate is observed due to user's intermittent movements while sleeping and tiny movements while awake. In this paper, we propose a novel method that resolves the above problems by employing a dynamic classifier which evaluates a similarity between the neighboring data scores obtained from SVM classifier. A performance of the proposed method is evaluated using 50 data sets and its superiority is verified by achieving 88.9% accuracy, 88.9% sensitivity, and 88.5% specificity.

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

ST Segment Shape Classification Algorithm for Making Diagnosis of Myocardial Ischemia (심근허혈 진단을 위한 ST세그먼트 형태 분류 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2223-2230
    • /
    • 2011
  • ECG is used to diagnose heart diseases such as myocardial ischemia, arrhythmia and myocardial infarction. Particularly, myocardial ischemia causes the shape change of the ST segment, this change is transient and may occur without symptoms. So it is important to detect the transient change of ST segment through long term monitoring. ST segment classification algorithm for making diagnosis myocardial ischemia is presented in this paper. The first step in the ST segment shape classification process is to detect R wave point and feature points based adaptive threshold and window. And then, the suggested algorithm detects the ST level change, To classify the ST segment shape, the suggested algorithm uses the slope values of the four points between the S and T wave. The ECG data in the European ST-T database were used to verify the performance of the developed algorithm. The best correct rate was 99.40% and the worst correct rate was 68.48%.

MRS Pattern Classification Using Fusion Method based on SpPCA and MLP (SpPCA와 MLP에 기반을 둔 응합법칙에 의한 MRS 패턴분류)

  • Song Chang kyu;Lee Dae jong;Jeon Byeong seok;Ryu Jeong woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.922-929
    • /
    • 2005
  • In this paper, we propose the MRS p:Ittern classification techniques by the fusion scheme based on the SpPCA and MLP. A conventional PCA teclulique for the dimension reduction has the problem that it can't find a optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback we extract features by the SpPCA technique which use the local patterns rather than whole patterns. In a next classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, MRS patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

An estimation technique of rock mass classes in undrilled region (미시추구간의 암반등급 산정 기법에 관한 연구)

  • 유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06b
    • /
    • pp.141-152
    • /
    • 2003
  • 터널 설계를 위한 조사 있어서, 요사이 시추공 조사는 물론 탄성파 탐사, 전기 비저항 탐사 등의 물리탐사가 빈번히 행해지고 있는 실정이다. 따라서 최적의 지반평가(암반 등급 등)를 위해 조사에서 얻어지는 모든 자료를 체계적으로 최대한 활용할 수 있는 방법이 절실히 요구되고 있다. 많은 연구자들이 정량적 데이터가 부족한 경우에 대처하기 위해 정상적 데이터의 이용을 적극 제안해 왔다. 본 연구에서는 신뢰도가 다른 두 종류의 자료, 즉 시추공자료와 물리탐사 자료를 활용하여 시추가 되지 않은 구간의 암반등급을 추정하는 방법을 지구통계학적 이론에 근거하여 소개하고자 한다.

  • PDF

A Study on the General Blasting and the Vibration Control Blasting (일반발파와 진동제어발파에 대한 연구)

  • 김일중;기경철;원연호
    • Explosives and Blasting
    • /
    • v.20 no.2
    • /
    • pp.33-41
    • /
    • 2002
  • 화약류를 사용하여 암반을 절취하는 작업현장에서의 발파공해는 항상 발생하고 있다. 특히 폭약의 폭발로 인해 발생하는 지반진동은 크고 작은 문제를 야기하고 있다. 일반적으로 발파현장에서 사용하고 있는 일반발파와 진동제어(미진동)발파에 대한 의미와 구분 및 시공에 대해 인식시키고자 그동안의 경험과 이론을 토대로 하여 연구하게 되었다. 본 연구에서는 일반발파와 진동제어발파를 구분하는 요소로 암분류 및 진동속도를 지발당장약량과 관계, 암분류에 따른 비장약량 및 발파공당 암절취량 그리고 천공경을 선정하여 고찰하였다. 이들 요소를 기준으로 일반발파와 진동제어발파의 경계가 되는 보안물건으로부터 거리 산출방법에 대해서 연구하였다. 일반발파나 진동제어발파 모두 보안물건에는 한계 진동속도 이내의 진동이 전달되어야 하며, 그 경계가 되는 발파공당 절취암량은 연암의 경우 약$16.67m^3$, 보통암의 경우 약$12.5m^3$, 경암의 경우 약 $10m^3$을 기준으로 하는 것이 바람직하고, 그 경계가 되는 보안물건으로부터 거리는 일정하게 정해진 것이 아니므로 현장에서 대상암반에 대해 시험발파를 실시하여 암분류, 비장약량, 지발당장약량, 한계 진동속도를 기준으로 결정하는 것이 바람직하다. 진동제어(미진동)발파구간내에서 발파설계단가는 일률적이 아닌 약2~3구간으로 분할하여 산출해야한다.