최근 정보의 폭발적인 증가로 인해 사용자에게 적합한 정보를 제공하기 위한 정보의 필터링이 매우 중요시 되고 있다. 한국과학기술정보연구원에서 운영하고 있는 학술정보서비스인 NDSL은 방대한 자료를 보유함에도 불구하고 사용자들은 검색 외에 자료 획득이 쉽지가 않다. 본 논문은 사용자에게 적합한 정보를 제공하기 위하여 키워드 특성을 활용한 서비스인 PIN(Profiling service In NDSL)을 제안한다. PIN은 키워드만을 가지고 검색하는 것이 아닌 사용자 본인 및 유사 사용자가 등록한 관심 키워드, 동시이용 키워드, 검색 키워드로 분석된 워드 클라우드를 제공하고 이를 통하여 사용자에게 맞춤형 논문, 보고서, 특허, 동향의 콘텐츠를 추천한다. 또한 콘텐츠를 보다 쉽게 접근하기 위하여 중복분류가 가능한 학술연구분류체계 기반 분류를 제공한다. 이를 검증하기 위해 NDSL의 축적된 2016년도의 국내논문의 데이터를 기반으로 분류별로 키워드를 추출하고 이를 통해 매칭 기반의 분류 모델을 만든 후 트레이닝 및 테스트를 거쳐 결과를 도출한다.
본 연구는 영유아 도서의 자료조직 실태를 파악하기 위하여 J시에 소재한 8개 시립도서관 영유아실을 대상으로 자료조직 현황과 문제점을 분석하고 이를 토대로 개선방안을 제시하였다. 조사방법은 분석대상 도서관의 어린이실 담당 사서 8명, 영유아실을 방문한 부모 25명을 대상으로 인터뷰를 실시하였다. 조사 결과, 모든 도서관에서 KDC를 적용하여 분류하고 있었으나 배가는 분류체계와는 달리 출판사명의 자모순 배가를 실시하고 있었다. 이러한 출판사별 배가 방식은 사서 측면에서는 정리의 편리성이 높은 것으로 평가되었으나 이용자들은 분류체계와 배가의 이원화로 인해 자료 검색의 어려움을 겪고 있는 것으로 조사되었다. 또한, 온라인검색목록시스템의 검색 결과에 도서 위치에 대한 정확하고 충분한 정보가 제공되지 않는 경우가 많았다. 이러한 결과를 바탕으로 본 연구는 (1) KDC를 유지하되 배가 방식을 청구기호 순으로 전환하는 방안과 (2) 새로운 영유아용 분류표를 개발하는 두 가지 개선방안을 제안하였다.
분야연상어는 어휘자체가 분야정보를 가지므로 인간이 분야를 인지할 때와 유사하게 문서의 분야를 판단한다. 한국어의 경우 180분야로 분류된 약 IS,000개의 문서뱅크를 수집하여 구축 $\cdot$실험한 결과 88,782개의 단일 분야연상어가 8,405개로 전체의 약 9$\%$로 압축되며, 재현율 0.77 이상(평균 0.85), 정확률 0.90 이상(평균 0.94)의 높은 추출 정밀도를 얻었다. 구축한 분야연상어를 문서분류의 초기결정에 적용하여 인간에 의한 분야결정과 비교한 결과 약 90$\%$이상의 정답률을 얻었다. 연구결과를 문서분류의 초기단계에 관한 기초연구로 이용하고, 다언어(multilingual) 간의 문서검색에 적용하여 다국어 정보검색에 대한 기초 연구로 이용할 수 있다.
본 연구에서는 CNN(Convolution Neural Network) 모델을 이용하여 야구 경기 영상에서 투구나 스윙과 같은 특정 영상이 출현하는 장면을 자동으로 분류하여 효과적으로 검색하는 방법을 제안한다. 또한, 특정 동작의 분류 결과와 경기 기록을 연계한 영상 장면 검색시스템을 제안한다. 제안 시스템의 효율성을 검정하기 위하여 2018년부터 2019년까지 진행된 한국프로야구 경기 영상을 대상으로 특정 장면별로 분류하는 실험을 진행하였다. 야구 경기 영상에서 투구 장면을 분류하는 실험에서는 경기별로 약 90%의 정확도를 보였다. 그리고 경기 영상 내에 포함된 스코어보드를 추출하여 경기 기록과 연계하는 영상 장면 검색 실험에서는 경기별로 약 80% 정도의 정확도를 보였다. 본 연구 결과는 한국프로야구 경기에서 과거 경기 영상을 체계적으로 분석하여 경기력 향상을 위한 전략 수립을 위하여 효과적으로 사용할 수 있으리라 기대한다.
오래전부터 연구자들은 CBIR에 대한 많은 연구로 인해 이미지 검색 분야에 우수한 결과를 제시하였다. 그러나 이미지에 대한 이러한 검색 결과와 사람이 인식하는 결과 사이에 의미적 격차는 여전히 존재한다. 적은 수의 이미지를 사용하여 사람이 인식하는 수준의 이미지를 분류하는 것은 아직까지 어려운 문제이다. 따라서 본 논문은 이미지 검색에서 사람과 검색 시스템의 이미지의 의미적 격차를 최소화하기 위해 딥 러닝 기반의 전이 학습을 이용한 이미지 분류 모델을 제안한다. 실험 결과, 학습 모델의 손실률은 0.2451%, 정확도는 0.8922%로 제안한 이미지 분류 방법의 구현은 원하는 목표를 달성할 수 있었다. 그리고 딥 러닝에서 CNN의 전이 학습 모델 방법이 새로운 데이터를 추가하여 이미지 데이터베이스를 구축하는데 효과적인 결과를 확인할 수 있었다.
감정요소를 사용한 정보검색시스템은 감정에 기반한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.
본 논문에서는 효과적인 특징 추출을 기반으로 한 계층적인 검색 시스템을 제안한다. 조명 변화 및 영상의 이동과 크기 변화 그리고 회전과 같은 기하학적 변형에도 강한 속성을 가지는 영상 검색을 할 수 있도록 사용자의 질의 영상을 웨이블릿(Wavelet) 변환을 한 후 동일한 크기의 부영역으로 나누어진 저대역 부밴드에서 칼라의 특징으로 추출된 모멘트와 질감 특징인 GLCM(Gray Level Co-occurrence Matrix)의 Contrast를 사용해 유사 영상들의 1차 분류 과정을 거친다. 보다 정확한 검색을 수행하기 위해 1차 분류된 후보 영상들에 대해 고대역 부밴드에서 추출된 수평, 수직, 대각선 방향별 에너지(Energy)를 기반으로 한 에너지의 상대적인 성분 분포의 비교가 수행됨으로써 효율적인 영상 검색 결과를 보였다.
본 논문에서는 새로운 내용기반 이미지 검색 기법으로 식물 잎의 윤곽선에 대하여 동적 시간 정합 기법을 이용하여 유사한 이미지를 효과적으로 검색하는 방법을 제안한다. 이를 위하여 우선 식물 잎의 기준점에 대하여 잎의 가장자리를 따라 가면서 구해지는 거리의 곡선을 통하여 잎의 외형 특성을 표현하였다. 추출된 곡선 정보의 효율적인 저장과 처리를 위하여 곡선의 특성을 표현할 수 있는 퓨리에 계수(Fourier Coefficients)를 계산하고 이를 바탕으로 유사한 이미지를 계산하였다. 이런 과정에서 생기는 문제점으로는 복잡한 형태의 곡선에 대해서는 퓨리에 계수를 통하여 저장하고 복원하는 과정에서 원본 곡선의 세부적인 형태 정보를 상실하게 된다. 이러한 문제를 해결하기 위해서는 복잡한 곡선 유형에 대해서는 복원시 상실되는 정보가 최소화될 수 있는 작은 단위의 구간으로 나누고 이에 대한 퓨리에 계수를 계산하는 방법으로 다수의 퓨리에 계수 세트를 추출하는 이진 구간 분할 (Binary Range Reduction) 알고리즘을 사용하였고 질의 이미지와 저장된 이미지들을 비교하는 과정에서 검색의 정확도를 향상시키기 위하여 동적 시간 정합(Dynamic Time Warping) 알고리즘을 사용하였다. 그리고 검색의 효율을 더욱 높이기 위하여 추출된 외형 정보를 기반으로 잎의 유형을 다양한 카테고리로 분류하는 외형 기형 기반의 잎 분류 기법을 제안하였다. 다양한 실험을 통하여 제안한 기법이 식물 잎 검색에 우수한 성능을 나타냄을 보인다.
본 연구에서는 성공적인 컴포넌트의 재사용을 위하여 도메인 지향(domain orientation) 개념을 도입하여 컴포넌트들을 저장소에 분류, 검색하는 방법을 제안한다. 설계 시 디자인 패턴이 적용된 기존 시스템의 컴포넌트를 대상으로, 해당 도메인 내에 있는 각 컴포넌트와 기준패턴과의 구조적 유사성을 비교함으로서 컴포넌트를 분류하는 방법을 제시하였다. 재사용 가능한 컴포넌트를 기능별로 분할하고 그 구조를 다이어그램으로 제공함으로서 컴포넌트의 재사용 및 플랫폼간의 이식성을 높일 수 있다. 또한 E-SARM 알고리즘을 이용하여 질의와 가장 적합한 컴포넌트와 그와 유사한 후보 컴포넌트들이 우선순위(priority order)로 제공됨으로서 컴포넌트 재사용 효율을 높여줄 수 있도록 하였다.
인터넷상에서의 정보검색은 검색엔진을 이용하여 이루어지는데, 방대한 사이트들을 검색하여야 하므로 검색효율이나 검색된 정보의 유용성에 문제가 있게 된다. 만약 이러한 정보들을 미리 자동적으로 검색, 분류해서 저장한다면 위의 두 가지 문제들을 해결할 수 있을 것이다. 자동적으로 이런 일을 처리하도록 고안된 것이 웹 로봇 에이전트라고 하며 현재국내에도 여러 개의 웹 로봇 에이전트를 이용한 검색엔진이 사용되고 있다. 본 논문에서는 검색엔진을 구현하기 위해 하이퍼텍스트 전송규약에 대한 연구와 웹 로봇 에이전트에 대한 연구를 하여 올바른 로봇 에이전트를 구현하여, 구현된 검색엔진을 통한 효율적인 정보검색을 실현하는데 목적이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.