Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.796-798
/
2004
본 논문에서는 웹 문서의 분류 성능을 향상시키기 위해 웹 페이지에서의 자질선택과 그에 따른 웹 문서 분류 방법을 제안한다. 문서 분류에는 문서에 포함된 단어를 분류 자질로 사용하게 되며 이때 한 문서의 모든 단어를 분류 자질로 이용한다고 좋은 성능을 보인다고 보장할 수는 없다. 그러므로 문서에 필요한 단어만을 자동으로 추출하여 문서데이터의 자질을 축소하는 작업이 필요하다. 따라서 본 논문에서는 모집군 내의 자질벡터의 범위가 큰 것을 적은 수의 주요성분으로 감소시키기 위해 통계적 분석 기법중의 하나인 주성분분석 방법을 이용하여 자질감소와 그에 따른 문서분류의 성능 향상을 실험을 통하여 보인다. 야후 스포츠 뉴스 웹 페이지가 분류를 위해 사용되었으며, 분류기로는 Naive Bayesian 분류 방법을 사용하였다. 실험 결과를 통해 본 논문에서 제안한 뉴스 웹페이지 분류 방법이 스포츠 뉴스 데이터 군에서 만족할 만한 분류 정확도를 제공한다는 것을 알 수 있다.
Journal of Korean Society of Archives and Records Management
/
v.3
no.2
/
pp.1-33
/
2003
This study is to aim on the theory of document classification system and historical development of official document classification scheme since Chosun dynasty to Republic of Korea. We have been new version of classification scheme 'Document Classification Standard' is scheduled in 2004, though there are many fundamental problems in governmental agencies and record centers. Thus new 'Document Classification Standard' should be make discussion and inquire.
Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
Korean Journal of Remote Sensing
/
v.28
no.5
/
pp.489-499
/
2012
In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.
Proceedings of the Plant Resources Society of Korea Conference
/
2018.10a
/
pp.54-54
/
2018
숨은물뱅듸 산림유전자원 보호구역은 해발 950 m 이상 지역의 습지로서 오름으로 둘러싸인 넓은 웅덩이 형태로 환경부 멸종위기 2급 야생식물인 자주땅귀개를 비롯한 다양한 습지 식물과 이를 둘러싸고 있는 산림지역을 포함하여 산림청에서는 산림유전자원 보호구역으로 지정 관리되고 있다. 본 조사는 숨은물뱅듸 산림유전자원 보호구역을 대상으로 식물상을 조사하여 식물종 다양성을 보존하기 위한 기초자료를 만들기 위해 실시하였다. 본 연구는 2018년 7월 24일부터 8월 28일까지 총 4회에 걸쳐 현장조사를 통하여 표본을 채집하고 기록하여 정리하였다. 그 결과, 숨은물뱅듸에 자생중인 식물은 양치식물 8과 11속 17종 17분류군, 나자식물 2과 2속 2종 2분류군, 피자식물 56과 121속 167종 5변종 1품종 173분류군 총66과 134속 186종 5변종 1품종의 총 192분류군이 조사되었다. 이 중 환경부 멸종위기야생식물은 자주땅귀개 1종이 확인되었고, 제주특산식물 6분류군, 한국특산식물 2분류군이 확인되었다. 식물구계학적특정식물은 총37분류군이며 V등급 5분류군, IV등급 5분류군, III등급 12분류군, II등급 5분류군, I 등급 10분류군이 확인되었다. 한국의 적색목록 식물은 위기(EN) 1분류군, 취약(VU) 1분류군, 준위협(NT) 1분류군, 관심대상(LC) 6분류군, 미평가(NE) 3분류군으로 나타났다. 조사된 식물들 대상으로 생활형을 분석해보면, 휴면형은 Ch 47분류군으로 가장 많이 나타났고, G(30분류군), MM(24분류군), HH(23분류군) 순으로 나타났다. 번식형은 R5가 101분류군, 산포기관형은 D4가 84분류군, 생육형은 e가 89분류군으로 가장 많이 나타났다. 반면, 외래식물 1분류군이 출현한 것으로 보아 숨은물뱅되는 아직까지 보전이 잘 되어 있고, 식물종다양성이 우수하며 식물학적으로 가치가 매우 높은 것으로 판단되었다.
This study was carried out to investigate the vascular plants of Mt. Choejeong in Gachang-myeon, Daegu. From March 2017 to October 2018, a total of 22 studies were conducted. The vascular plants surveyed were grouped into 560 taxa, including 104 families, 297 genera, 495 species, 4 subspecies, 51 varieties and 10 forma. Endemic plants 15 taxa, Rare plants 5 taxa, Red list plants 5 taxa, Floristic regional indicator plants 54 taxa, Naturalized plants 36 taxa were recorded. Among surveyed 560 taxa, edible, medicinal, ornamental, timber, pasturing, industrial and fiber plants included 246 taxa (29.2%), 228 taxa (27.1%), 164 taxa (19.5%), 61 taxa (7.2%), 13 taxa (1.5%), and 8 taxa (0.9%). And because people are coming and going more frequently than in the past, this will result in more frequent influx of naturalized plants and a threat to the habitat of the plants that are currently growing.
Kim, Kun-Ok;Hong, Sun-Hee;Lee, Yong-Ho;Na, Chae-Sun;Kang, Byeung-Hoa;Son, Yo-Whan
Korean Journal of Plant Resources
/
v.23
no.1
/
pp.60-78
/
2010
To clarify the distribution of vascular plants and their usefulness in Heoninlleung, Ecological Landscape Conservation Areas of Seoul, we investigated it from April, 2006 to June, 2009. Total 313 taxa; 68 families, 191 genera, 264 species, 41 varieties and 8 forma were distributed in Heoninlleung. Among them, 37 taxa were highly abundant everywhere (3A), 16 taxa were highly abundant locally (3B), 70 taxa were moderately abundant everywhere (2A), 96 taxa were common in certain regions locally (2B), 9 taxa were rare but observed everywhere with low frequency (2A) and 85 taxa were rare and observed locally (1B). The economic plants were 293 taxa. There were 156 taxa of edible source, 223 taxa of medicinal source, 141 taxa of ornamental source, 69 taxa of pastoral source, 12 taxa of industrial, and 8 taxa of timber source. Twelve Korean endemic plants were collected. Based on the list of rare plants by the Korea National Arboretum and Ministry of Environment, 2 rare species were found. The specific species of I~V grades by phytogeography were 19 taxa. And twentyfour taxa of naturalized plant species were distributed. Naturalization Index was 7.7% and Urbanization Index was 8.4% in the investigated area.
The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.
In many practical teaming problems including bioinformatics area, there is a small amount of labeled data along with a large pool of unlabeled data. Labeled examples are fairly expensive to obtain because they require human efforts. In contrast, unlabeled examples can be inexpensively gathered without an expert. A common method with unlabeled data for data classification and analysis is co-training. This method uses a small set of labeled examples to learn a classifier in two views. Then each classifier is applied to all unlabeled examples, and co-training detects the examples on which each classifier makes the most confident predictions. After some iterations, new classifiers are learned in training data and the number of labeled examples is increased. In this paper, we propose a new co-training strategy using unlabeled data. And we evaluate our method with two classifiers and two experimental data: WebKB and BIND XML data. Our experimentation shows that the proposed co-training technique effectively improves the classification accuracy when the number of labeled examples are very small.
Journal of the Korean Society for information Management
/
v.28
no.3
/
pp.83-101
/
2011
The international standards, ISO 15489 and Family Code, recommend using functional classification method both in public and private organizations. In this study made a comparative analysis of the details of classification systems through case studies on records classification systems of a total of seven comprehensive construction companies in Korea including three large corporations and four small and medium-size businesses. Findings of this study suggester the direction of developing construction records classification system and its methodology. By summarizing classification standards derived from these case studies, key construction records classification standards were presented.
Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different Issues how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of existing multiple classifier systems : Bagging, Boosting, and Slaking. For document classification, we propose new MCSs such as Stacked Bagging, Stacked Boosting, Bagged Stacking, Boosted Stacking. These MCSs are a sort of hybrid MCSs that combine advantages of existing MCSs such as Bugging, Boosting, and Stacking. We conducted some experiments of document classification to evaluate the performances of the proposed schemes on MEDLINE, Usenet news, and Web document collections. The result of experiments demonstrate the superiority of our hybrid MCSs over the existing ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.