• Title/Summary/Keyword: 북동태평양

Search Result 56, Processing Time 0.023 seconds

Sulfate reduction and sulfur isotopic fractionation in marine sediments (해양퇴적물내에서의 황산염 환원과 황의 안정동위원소 분화)

  • 한명우
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Concentrations of sulfate and 6-values of sulfate, $({\delta}^{34}SO_4_){pw}$, dissolved In pore waters were measured from the sediment cores of the two different marine environments : deep northeast Pacific (57-1) and coastal Kyunggi Bay of Yellow Sea (57-2) . Sulfate concentration in pore waters decreases with depth at both cores, reflecting sulfate reduction in the sediment columns. However, much higher gradient of pore water sulfate at 57-2 than 57-1 indicates more rapid sulfate reduction at 57-2, because of high sedimentation rate at the coastal area compared to the deep-sea. The measured 6-values, $({\delta}^{34}SO_4_){pw}$, follow extremely well the predicted trend of the Rayleigh fractionation equation. The range of 26.756 to 61.35% at the coastal core 57-2 is not so great as that of 32.4$\textperthousand$ to 97.8$\textperthousand$ at the deep-sea core 57-1. Despite greater graclient of pore water sulfate at 57-2, the 6-values become lower than those of the deep- sea core 57-1. This inverse relation between the 6-values and the gradients of pore water sulfate could be explained by the combination of the two subsequent factors : the kinetic effect by which the residual pore water sulfate becomes progressively enriched with respect to the heavy isotope of $^{34}S$ as sulfate reduction proceeds, and the intrinsic formulation effect of the Rayleigh fractionation equation in which the greater becomes the fractionation factor, the more diminished values of $({\delta}^{34}SO_4_){pw}$ are predicted.

  • PDF

Evaluation of Correction Parameter for the Free-fall Grab Based Mn Nodule Abundance in the Southern Sector of the KODOS (KODOS 남쪽광구에서 자유낙하식 채취기로 채취된 망간단괴 부존률 평가를 위한 보정상수 검증)

  • Lee, Hyun-Bok;Ko, Young-Tak;Kim, Jong-Uk;Chi, Sang-Bum;Kim, Won-Nyon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.475-483
    • /
    • 2011
  • Quantitative estimate of manganese nodules based on the operation of a free fall grab (FFG) needs to be corrected because of its less retrieval ability. Previously, the correction parameter of the nodule abundance collected by FFG was calculated based on the image analysis of the photos of bottom sediment in the northern sector of the nodule exploration area of Korea in the NE equatorial Pacific. However, nodules in the southern sector are commonly covered by sediment, which may prevent the use of the correction parameter estimated by photographic techniques. In this study, we attempted dual nodule sampling at the same location by different equipments (i.e. box corer (BC) and FFG) to examine the previous correction parameter of nodule abundance for FFG operation. During the exploration cruises in 2007 to 2009, Mn-nodules were collected from 40 stations both by BC and FFG in the southern sector. The correlation analysis between BC and FFG operations revealed that the BC collected nodules 1.43 times larger than FFG. Our result suggests that the correction parameter of 1.43 can be applied for collection of FFG data to estimate Mn-nodule distribution in the southern sector. The obtained parameter is similar to the previous parameter (1.42~1.45) calculated by the image analysis method, indicating an usefulness of new correction parameter suggested by this study.

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

Meiobenthic Faunal Communities of the Deep-sea Sediments in the Northeastern Pacific along a Latitudinal Transect (북동태평양 심해 퇴적물에 서식하는 중형 저서 생물군집의 위도별 특징)

  • Hyun, Jung-Ho;Choi, Jin-Woo;Lee, Kyeong-Yong;Kim, Dong-Sung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.245-254
    • /
    • 2000
  • This study was conducted to investigate the community structure and distributional pattern of meiobenthos in the deep sea bottoms of northeastern Pacific during July 1998. The faunal samples were collected using the multiple corer at ten stations; eight stations along the transects from 5$^{\circ}$N to 12$^{\circ}$N, and two stations in the Preservation Zone and Impact Zone of the KODOS (Korea Deep Ocean Study) area. The organic carbon content in sediments ranged from 0.79 to 1.76 mg cm$^{-3}$, and higher concentration appeared at stations in lower latitudes than 8$^{\circ}$N. The most abundant meiobenthos was nematodes and followed by foraminiferans; these two taxa comprised more than 70% of the total abundance at all stations. The most abundant meiobenthos occurred with mesh size of 0.063 nm. The maximum density of meiobenthos was 442 ind./10 cm$^2$ at station N5, and the density gradually decreased toward station N8 where the minimum density of 92 md./10 cm$^2$ was found. More than 60% of meiobenthos were distributed at surface sediment layer within 1.0 cm, and the peak abundance was found at 0-0.25 cm layer. The latitudinal distribution pattern of meiobenthos in the study area seemed to be related with the primary productivity of the surface water that is also connected to the water circulation pattern of the Pacific Ocean near the Equator, diverging at latitude of 8$^{\circ}$N and conversing at 5$^{\circ}$N.

  • PDF

A Study on Geotechnical Properties of Deep-Sea Sediments, NE Equatorial Paciflc of KODOS Area (북동태평양 KODOS 지역 심해저 퇴적물의 지질공학적 특성)

  • Kim, Ki-Hyun;Moon, Jai-Woon;Lee, Kyeong-Yong;Son, Seung-Kyu;Oh, Jae-Kyung;Chi, Sang-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.320-334
    • /
    • 2000
  • Deep-sea surface sediment were analyzed for their geotechnical properties, and the sediment samples were collected with a multiple-corer from 31 stations along the track line (131$^{\circ}$30'W, 5-12$^{\circ}$N) in the northeast equatorial Paciflc. Most of the sediments from the northern part (8-12$^{\circ}$N) showed typical properties of siliceous sediments, whereas the southern part (5-6$^{\circ}$N) showed calcareous characteristics due to high biogenic carbonate productivity in the surface waters, where its water depth was shallower than the carbonate compensation depth (CCD: 4,400 m). Geotechnical properties changed sharply at the boundary of 7$^{\circ}$N. Calcareous sediments from the southern part had low water contents, low porosity, low shear strength, high bulk density and high specific grain density, whereas siliceous sediments from the northern part attained high water content, high porosity, high shear strength, low bulk density and low specific grain density. Higher sediment activities were observed in the northern sediment samples than the southern sediment samples. The core samples of the northern sediments were divided into a semi-liquid upper layer and a consolidated lower layer with a boundary at 5-8 cm. These sediment samples showed a rapid increasing pattern along the downcore in original shear strength when an opposite trend was observed in the southern samples. The results showed that sediment variabilities in geotechnical properties between the northern and southern parts such as productivities of surface water, grain solubility due to water depth variation, sedimentation rate, erosion and redistribution of sediment, and combined sedimentary processes were distinctly different along the latitude.

  • PDF

Distribution and Remineralization Ratio of Inorganic Nutrients in the Divergence Zone($7^{\circ}{\sim}10.5^{\circ}N$), Northeastern Pacific (북동태평양 발산대 해역($7^{\circ}{\sim}10.5^{\circ}N$)의 무기영양염 분포와 재무기질화 비율)

  • Son, Ju-Won;Kim, Kyeong-Hong;Kim, Mi-Jin;Son, Seung-Kyu;Chi, Sang-Bum;Hwang, Keun-Choon;Park, Yong-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.178-189
    • /
    • 2008
  • The distribution of inorganic nutrients and their remineralization ratio in the divergence zone ($7^{\circ}{\sim}10.5^{\circ}N$) of the northeastern Pacific were investigated from July 2003 to July 2007. A divergence zone along the boundary of the North Equatorial Counter Current (NECC) and North Equatorial Current (NEC) at $10^{\circ}N$ was observed in July 2007 when the La Nina event and divergence-related upwelling was strong. The mean depth of oligotrophic surface mixed layer in the divergence zone was 46, 61, and 30 m in July 2003, August 2005, and July 2007, respectively. Below the surface mixed layer, a nutricline was clearly observed. The depth integrated value of nitrate including nitrite (DIVn) in the upper layer($0{\sim}100$ m depth) ranged from 5.51 to 21.71 $gN/m^2$(mean 12.82 $gN/m^2$) in July 2003, from 5.62 to 8.46 $gN/m^2$ (mean 7.15 $gN/m^2$) in August 2005, and from 8.98 to 27.80 $gN/m^2$(mean 21.12 $gN/m^2$) in July 2007. The maximum DIVn was observed at the divergence zone. The distributions of phosphate(DIVp) and silicate(DIVsi) were similar to that of DIVn and the DIVn/DIVsi ratio was $0.87{\pm}0.11$ in the upper layer. The limiting nutrient for phytoplankton growth in the study area was identified as nitrogen(N/P ratio=14.6). The nitrate (including nitrite) concentrations were lower in the region mainly affected by NEC than in the region affected by NECC. The study area of low silicate concentrations was also considered to be Si-limiting environment. The remineralization ratios of nutrients were $P/N/-O_2=1/14.6{\pm}1.1/100.4{\pm}8.8(23.44{\leq}Sigma-{\theta}{\leq}26.38)$ in the study area. These ratios suggested remineralization process in the surface layer of divergence zone.