• Title/Summary/Keyword: 북동태평양

Search Result 56, Processing Time 0.022 seconds

Physical Properties of Surface Sediments from the KR(Korea Reserved) 5 Area, Northeastern Equatorial Pacific (북동태평양 대한민국 광구 KR5 지역 표층퇴적물의 물리적 특성)

  • Lee, Hyun-Bok;Chi, Sang-Bum;Hyeong, Ki-Seong;Park, Cheong-Kee;Kim, Ki-Hyune;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.475-484
    • /
    • 2006
  • In order to reveal the vertical variation of physical properties in deep-sea sediments, deep-sea sediment cores were collected at 78 stations using a multiple corer in the KR5 area, one of the Korea contract areas for manganese nodule exploration, located in the northeast equatorial Pacific. Based on the color of sediments, sampled sediment cores were characterized into three lithologic units (unit 1,2, and 3). In all sediment cores, three units appear systematically; unit 1 lies at the top of cores and unit 2 and/or unit 3 appear to underlie unit 1 or alternate with unit 3. Unit 1 layer from the top of cores shows dark grayish brown to dark brown with mean thickness of 10.2cm. Unit 2 and 3 layers show very dark brown to black color and yellowish brown to brown color, respectively. According to the physical properties of the deep-sea sediment cores, sediment column can be divided into three sections. Section A $(0{\sim}15cm)$ in subbottom depth consists mostly of unit 1. Mean values of physical properties of section B $(15{\sim}30cm)$ in subbottom depth are similar to those of section C (>30 cm) in subbottom depth. However, the physical properties of section B were more variable than those of section C because of the high activity of bioturbation in section B. These results will provide valuable information for selecting suitable sites for mining manganese nodules in the Korea contract areas.

Macrozoobenthic Communities of the Deep Sea Sediments in the Northeastern Pacific Ocean (북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집)

  • Choi, Jin-Woo;Kim, Dong-Sung;Hyun, Jung-Ho;Lee, Chang-Hoon
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.367-376
    • /
    • 2004
  • Macrobenthos were collected at 7 stations located from $5^{\circ}N$ to $10^{\circ}N$ with 1o interval along the longitude of $131^{\circ}W$ using a box corer with sampling area of $0.25\;m^2$ in July, 1999. In order to see the vertical distribution of macrobenthos in sediments, each subcore sample was divided into 5 layers with 1 cm interval up to 6 cm depth. Each subcore sample was sieved through 0.3 mm mesh screen and fixed with 10% Rose Bengal added formalin. A total of 22 faunal groups in 11 phyla were sampled and the average density was $959\;{\pm}\;584\;ind./m^2$. Foraminiferans comprised 34.8% of total specimens were the most abundant fauna, and followed by nematodes (27.5%), polychaete worms (15.7%), and benthic harpactoid copepods (10.4%). A latitudinal trend was shown in the distribution of macrobenthos; the maximum density of $1,832\;ind./m^2$ appeared at station N06 and the most poverished community occurred at station N09 with the density of $248\;ind./m^2$. The density of typical macrofaunal taxa except foraminiferans and nematods was $116\;ind./m^2$. In the vertical distribution of macrobenthos, more than 70% of macrobenthos occurred in the upper 2 cm layer, and upper 4 cm layer contained about 90% of macrofauna. Polychaete worms consisted of 22 families, and cirratulid and paraonid worms were dominant polychaete species. The prominant feeding guilds of polychaete worms were SDT (surface, descretely motile, tenaculate feeding) and SMX (surface, motile, non-jawed); they comprised more than 50% of polychaete abundance. These feeding guilds of polychaete worms suggests that the deep sea benthos should be well adapted the newly settled deposits from water column, but this should be clarified by the further studies.

Inorganic Nutrient Distributions in Association with Thermocline at KOMO Station in the Northeast Equatorial Pacific Ocean during 1995-2002 (북동태평양 KOMO 정점에서 수온약층에 따른 무기영양염 분포 특성(1995-2002))

  • Son, Seung-Kyu;Son, Ju-Won;Kim, Kyeong-Hong;Kang, Jung-Hoon;Chi, Sang-Bum;Yoo, Chan-Min;Park, Cheong-Kee;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.377-384
    • /
    • 2004
  • Annual variations of inorganic nutrients such as nitrate(+nitrite), phosphate and silicate in association with thermocline were investigated in the upper 200 m of the water column at KODES Long-term Monitoring (KOMO) station in the northeast equatorial Pacific from 1995 to 2002. Global climatic disturbances such as El Nino and La Nina, should have affected KODES area during the study period. In 1995-97 and 2000-2002, a thermocline where temperatures rapidly decrease with depth, was formed at 50-70 m water depth. Nutrient depletion, specially for nitrate and phosphate, was extended down to approximately 50 m depth, which coincided with the surface mixed layer depth. In 1998 and 1999, however a very fluctuating thermocline was observed at 20-100 m water depth. In the photic zone (up to 100 m depth), depth integration of nitrate, phosphate and silicate ranged from 2.02 to $23.14\;gN/m^2$, from 0.87 to $4.05\;gP/m^2$ and from 35.67 to $176.21\;gSi/m^2$, respectively. As a result of changes in the water column structures, nutrient concentrations also showed fluctuation parallel to the changes of thermocline in the study area.

The Distribution of Epifaunal Megabenthos Varies with Deep-sea Sediment Conditions in the Korea Deep Ocean Study Area (KODOS) of the North-eastern Pacific (북동태평양 KODOS 해역 심해 해저특성에 따른 초대형저서동물 분포)

  • Yu, Ok Hwan;Son, Ju Won;Ham, Dong Jin;Lee, Gun Chang;Kim, Kyeong Hong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.447-454
    • /
    • 2014
  • In August, 2013, we collected epifaunal megabenthos using a deep sea camera (DSC) around a benthic impact study (BIS) site. This was located in the KR5 block of the Korea Deep Ocean Study (KODOS) area in the Northeastern Pacific. The DSC was positioned at $6.8{\pm}2.9m$ (SD) from the sea bottom and was operated from a position at $131^{\circ}56.85^{\prime}-131^{\circ}55.02^{\prime}W$ for 2.3 h at a speed of 1-2 knot. The geographical features of the study area consisted of two structures; a trough in the middle and hills at the east and west sides. Sediment conditions were consistent within six blocks and were affected by slope and polymetallic nodule deposits. We analyzed 226 megafaunal species. Sipunculida comprised the highest percentage of individuals (39%), and the dominant epifaunal megabenthos were Hormathiidae sp., Primnoidae sp., Hexactinellida sp., Hyphalaster inermis, Freyella benthophila, Paelopatides confundens, Psychropotes longicauda, and Peniagone leander. More than 80% of the total density of megafauna occurred on sea plain (D- and E-blocks). We found two distinct groups in the community, one located on sea plains and the other along both sides of the sea slop. Our results suggest that geographical features such as slope and polymetalic nodule deposits are important in controlling the distribution of the epifaunal megabenthos around the KODOS area.

Seasonal Variation of Planktonic Foraminifera Assemblage in response to Seasonal Shift of Inter-Tropical Convergence Zone in the Northeastern Equatorial Pacific (적도수렴대의 위치변화에 따른 북동태평양 적도해역의 부유성 유공충 군집의 계절변동)

  • Lee, Yuri;Asahi, Hirofumi;Woo, Han Jun;Kim, Hyung Jeek;Lee, Seong-Joo;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.437-445
    • /
    • 2014
  • A time-series sediment trap was operated at a water depth of 4950 m from July 2003 to May 2004 at KOMO station ($10^{\circ}30^{\prime}N$, $131^{\circ}20^{\prime}W$) in the northeastern equatorial Pacific, with the aim of understanding the temporal variation of planktonic foraminifera assemblages in response to the seasonal shift of Inter-Tropical Convergence Zone (ITCZ). A total of 22130 planktonic foraminifera specimens belonging to 30 species and 11 genera were identified, which shows a distinct seasonal variation with high values (125~288 specimens $m^{-2}day^{-1}$) in the winter to spring (December-May) and low values (16~23 specimens $m^{-2}day^{-1}$) in the fall (September-November). In addition, seasonal ecological differences of foraminifera assemblages are distinctly recognizable: omnivorous foraminifera occurred predominantly during the summer season, whereas herbivorous ones were dominant during the winter season. Such seasonal variations correspond to the seasonal shift of the ITCZ. Enhanced occurrence of herbivorous species during the winter-spring season seems a result of surface water mixing generated by the southward shift of the ITCZ. The increase in omnivorous species during the summer season may be due to the northward movement of the ITCZ caused by weakened wind speed, resulting in the intensification of water column stratification and nutrient-poor environment. A significant reduction of planktonic foraminifera specimens during the fall is attributed to heavy precipitation and reduction in light intensity.

Evaluation of Similarity of Water Column Properties and Sinking Particles between Impact and Preserved Sites for Environmental Impact Assessment in the Korea Contracted Area for Manganese Nodule Development, NE Pacific (북동태평양 한국 망간단괴 광구해역에서 환경충격 시험지역과 보존지역간의 수층환경 및 침강입자 플럭스 유사성 비교)

  • Son, Juwon;Kim, Kyeong Hong;Kim, Hyung Jeek;Ju, Se-Jong;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.423-435
    • /
    • 2014
  • Verifying the similarity of environmental characteristics between an artificial impact site and a preserved or reference site is necessary to quantitatively and qualitatively evaluate the environmental impact of mining activity. Although an impact site (BIS station) and a preserved site (called KOMO station) that have been selected in the Korea manganese nodule contract area may share similar environmental characteristics, similarities in terms of the water column environment between both sites has not been investigated. In this study, we compared the chemical properties of the water columns and sinking particle fluxes between BIS and KOMO stations through two observations (August 2011 and September 2012). Additionally, we observed particle fluxes at the KOMO station for five years (July 2003~July 2008) to understand long-term natural variability. Vertical distributions of water column properties such as dissolved oxygen, inorganic nutrients (N, P, Si), total organic carbon below surface layer (within the depth range of 200 m) were not considerably different between the two sites. Especially, values of water column parameters in the abyssopelagic zone from 4000 m to bottom layer (~5000 m) were very similar between the BIS and KOMO sites. Sinking particle fluxes from the two sites also showed similar seasonality. However, natural variation of particle flux at the KOMO site varied from 3.5 to $129.9mg\;m^{-2}day^{-1}$, with a distinct temporal variation originating from ENSO events (almost forty times higher than a minimum value). These results could provide valuable information to more exactly evaluate the environmental impact of mining activity on water columns.

Topographic Analysis Using Wavelet-Based Digital Filters in the KR5 area, NE Equatorial Pacific (웨이브렛 디지털 필터를 이용한 북동태평양 KR5 지역의 지형 분석방법)

  • Jung, Mee-Sook;Lee, Tae-Gook;Kim, Hyun-Sub;Ko, Young-Tak;Park, Cheong-Kee;Kim, Ki-Hyune
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.311-320
    • /
    • 2006
  • Digital filters designed using wavelet theory are applied to bathymetry data acquired from KR5 area of Korea Deepsea Mining Area. The filters used in this study are the linear B-spline wavelet filter and derivative of a Cubic B-spline filter. With proper tuning of the digital filters, we can identify the location and orientation of the abyssal hill and abyssal trough in bathymetry. These features obtained from the digital filters are well correlated with bathymetric image. This quantitative information, which can be used to understand the underlying geophysical processes, can be further processed to obtain the spacing, orientation and distribution of the abyssal hill. This wavelet analysis of bathymetry provides good data to select the mining site.

  • PDF

Classification of Deep-sen Sediment by Geotechnical Properties from the KODOS Area in the C-C Zone of the Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 KODOS 지역 심해저 퇴적물의 지질공학적 특성에 따른 유형분류)

  • Chi, Sang-Bum;Hyeong, Ki-Seong;Kim, Jong-Uk;Kim, Hyun-Sub;Lee, Gun-Chang;Son, Seung-Kyu
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.529-543
    • /
    • 2003
  • Deep-sea surface sediments, acquired from 1997 to 2002 in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were analyzed for index and geotechnical properties to provide background information for the design of manganese nodule minor. The sediments were classified into 16 types based on the measured properties and evaluated in terms of miner maneuverabillity and potential environmental impacts arising from mining activities. It was found that the middle part of the study area covered with coarse siliceous sediments is more favorable to the commercial production than the northern part of pelagic red clay. In particular, Area B2 in the middle part is considered the best mining site since it shows the highest abundance as well as it consists mostly of normally to over consolidated (types B, C, D) coarse siliceous sediments that are appropriate for effective minor movement and accompany weak environmental impacts. Taking account of all the analyzed core logs, the average shear-strength values are proposed as a practical guideline fur movements of a manganese nodule miner: 6.0 kPa at 10cm and 7.0kPa at 40cm below the seabed.

Accuracy of the Loran-C Fix in Cheju Areas (제주지역에서의 Loran-C 위치의 정도)

  • Kim, Gwang-Hong;Sim, Hyeong-Il;Jang, Chung-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.123-130
    • /
    • 1985
  • This paper was conducted for the purpose of evaluating the accuracy of the observed time difference in Loran-C when the ground wave propagated on the surface included both land sea. The time difference of X and Y station in North East Pacific Chain GRI 5970 was measured at 25 points in Cheju areas. The results obtained are as follows: (1) The errors of time difference for M-X pair are increased when the Loran-C wave propagates above 500m heights of Hanla mountain on propagation path between the observed point and master or X, Y slave station. (2) The errors of time difference for M-X pair are able to decrease by way of correction for the propagation velocity and the geodetic datum, but errors of the time difference for M-Y pair very irregularly because irregular terrain include in propagation path from X station and propagation path from Y station is twice longer than X station. (3) It is confirmed that accuracy of Loran-C fix can elevate by the way of all correction for a geodetic datum transformation, the propagation velocity with refractive index of radio wave and the propagation velocity over land.

  • PDF

Standing Stocks and Spatial Distribution of Meiofauna on Deep-sea Sediment in an Environmental Impact Experiment of a Candidate Site for Manganese Nodule Development, NE Pacific (북동태평양 Clarion-Clipperton 균열대의 망간단괴 채광을 위한 환경충격시험 예정 지역 심해 해저면에 서식하는 중형저서생물 현존량 및 공간 분포 특성)

  • Min, Won-Gi;Rho, Hyun Soo;Kim, Dongsung
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1125-1139
    • /
    • 2020
  • This study investigated the distributional pattern of meiobenthos associated with future deep-sea mining in the Korea Deep Ocean Study area present in the Clarion-Clipperton Fracture Zone (CCFZ) located in the southeastern part of the North Pacific Ocean. Standing stocks of meiobenthos were investigated in benthic impact experiment sites (BIS) and Korea Institute of Ocean Science & Technology long-term monitoring (KOMO) sites during the 2008-2014 annual field survey. A total of 14 taxa of meiobenthos were identified. Nematodes were the most abundant taxon (60-86%). Harpacticoid copepods (5-26%) and benthic foraminifera (1-12%) were also dominant at all sites. The total meiobenthic densities varied from 4 to 150 ind./10 cm2. The mean value of total meiobenthic abundance was higher at BIS than at KOMO sites, but there was no significant difference between the two sites. The mean values of the number of taxa and biomass at BIS and KOMO sites were similar. The mean abundance of nematodes that were the most dominant taxa was also higher at BIS than at KOMO sites. The standing stocks in our study sites were relatively lower than those previously reported at other CCFZ sites. These results seem to reflect a low organic concentration in the study area.