• Title/Summary/Keyword: 부피성

Search Result 1,687, Processing Time 0.033 seconds

화학첨가제를 사용한 미분말 고화체 안정화 특성평가

  • Park, Jeong-U;Min, Byeong-Yeon;Choe, Wang-Gyu;Lee, Geun-U
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.150-151
    • /
    • 2009
  • 수화성이 회복된 미분말에 시멘트를 10% 첨가하고 무수규산을 20 wt% 배합하여 제작한고화체가 방사성 고화체 압축강도 인수기준에 만족함과 동시에 부피증가를 최소로 할 수 있었고이 조건으로 ANS 16.1 방법에 준하여 고화체 침출 실험이 진행 중에 있다. 고화체의 압축강도 및 침출지수 모두 처분장 인수 기준에 만족할 경우 콘크리트 미분말 폐기물의 부피 증가를 최소화함은 물론 안정한 상태로 처분할 수 있을 것으로 예상된다.

  • PDF

Effect of Different CT Scanner Types and Beam Collimations on Measurements of Three-Dimensional Volume and Hounsfield Units of Artificial Calculus Phantom (인공결석모형물의 부피와 하운스필드값 측정에 대한 전산화단층촬영기기의 타입과 빔 콜리메이션의 영향)

  • Wang, Jihwan;Lee, Heechun
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.495-501
    • /
    • 2014
  • The objective of this study was to evaluate the differences and reproducibility of Hounsfield unit (HU) value and volume measurements on different computed tomography (CT) scanner types and different collimations by using a gelatin phantom. The phantom consisting of five synthetic simulated calculus spanning diameters from 3.0 mm to 12.0 mm with 100 HU was scanned using a two-channel multi-detector row CT (MDCT) scanner, a four-channel MDCT scanner, and two 64-channel MDCT scanners. For all different scanner types, the thinnest possible collimation and the second thinnest collimation was used. The HU values and volumes of the synthetic simulated calculus were independently measured three times with minimum intervals of 2 weeks and by three experienced veterinary radiologists. ANOVA and Scheff$\acute{e}$ test for the multiple comparison were performed for statistical comparison of the HU values and volumes of the synthetic simulated calculus according to different CT scanner types and different collimations. The reproducibility of the HU value and volume measurements was determined by calculating Cohen's k. The reproducibility of HU value and volume measurements was very good. HU value varied between different CT scanner types, among different beam collimations. However, there was not statistically significant difference. The percent error (PE) decreased as the collimation thickness decreased, but the decrease was statistically insignificant. In addition, no statistically significant difference in the PEs of the different CT scanner types was found. It can be concluded that the CT scanner type insignificantly affects HU value and the volumetric measurement, but that a thinner collimation tends to be more useful for accurate volumetric measurement.

A Study on the Volumetric Expansion Ratio of Rock Mass for Subsidence Behavior Analysis II (지반침하 거동특성 분석을 위한 암반의 부피팽창률에 관한 연구 II)

  • Lee, Seung-Joong;Jung, Yong-Bok;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.436-446
    • /
    • 2008
  • The volumetric expansion ratio of rock mass on the subsidence occurrence area can explain why the depth of the surface subsidence is lower than the height of an opening; it is because the empty space of the gangway is filled with the broken rock. But, until now, when the surface subsidence mechanism is studied without consideration of the volumetric expansion ratio, it is usually overlooked that the amount of subsidence occurrence can be overestimated. Therefore, in this study, the authors researched the subsidence occurrence mechanism with a new theoretical approaching method. The volumetric expansion ratio obtained from this method has been applied to the numerical simulations. The authors adopted the UDEC(Universal Distinct Element Code) for their discontinuum numerical analysis, because this program has an advantage for analyzing the behavior of rock discontinuities.

Effect of Ear and Near-side Single Circular Pit Depth and Bulk Stress on Magnetic Flux Leakage at ferromagnetic Pipeline (강자성 배관 외.내부 면의 단일 원형 홈의 깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, Kwon-Sang;Park, Young-Tae;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • Magnetic flux leakage (MFL) signals were used for corrosion inspection of buried oil and gas pipeline. 3D finite element analysis was used to examine the effects of far and near-side pit depth and tensile stress on MFL signals. Anisotropci materials were used, and the effects of simulated tensile stress on MFL were investigated. The axial and radial MFL signals depended on far and near-side single pit depth and on the bulk stress, but the circumferential MFL signal did not depend on them. The axial and radial MFL signals increased with increasing pit depth and the bulk stress, but the circumferential MFL signal was scarcely changed.

Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon (활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성)

  • Tanveer, Ahmad;Park, Jeongmin;Choi, Sinang;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2018
  • Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.

Evaluation on Protrusion of the Imaginary Prostate Volume Using Three-Dimensional Volume Rendering (3차원 볼륨 렌더링을 이용한 가상 돌출형 전립선 부피 평가)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Rhim, Jae-Dong;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.208-215
    • /
    • 2009
  • This study is to compare the accuracy of evaluation regarding the volume of the prostate, which three-dimensional volume rendering was produced the shape of protrusion, by measuring two kinds of craniocaudal length from the top of the protrusion and from the exclusion of the protrusion as the starting points. For the imaginary protrusion prostate models, total of 10 models were roughly made by using devils-tongue jelly and changing each of the 10 ml of capacity from 10 ml to 100 ml. For the protrusion prostate models aimed at estimating the real volume, through 64 cannel computed tomography (CT) and 3.0 tesla magnetic resonance image (MRI) were conducted by planimetry technique from three-dimensional volume rendering. And then we performed to evaluate on significance of these volumes by wilcoxon signed rank test. Also the obtained volumes data by ellipsoid volume formula were measured the volume of protrusion prostate models two times with each method using the two kinds of craniocaudal length from top of the protrusion and from exclusion of the protrusion as the starting points. Finally, the significance of differences using wilcoxon signed rank test was evaluated between the real volume by planimetry technique and the measured volume by ellipsoid volume formula from three-dimensional volume rendering. The average of the protrusion length on the models was $0.90{\pm}0.18\;mm$ in CT and was $0.75{\pm}0.11\;mm$ in MRI. There were not statistically significant difference between MRI and CT from the volume of protrusion prostate models (p=0.414). In MRI (p=0.139) and CT (p=0.057), there were not statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from exclusion of the protrusion as the starting points. While, there were statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from top of the protrusion as the starting points in MRI (p=0.005) and CT (p=0.005). For the accurate measurement of the protrusion prostate models, the craniocaudal length of the prostate should be measured from the exclusion of the protrusion as the starting points.

  • PDF

Magnetic Layer Thickness Dependence on Magnetic Switching volume of CoSm/Cr Thin Films (CoSm/Cr 박막의 자성층 두께에 따른 자기역전부피)

  • 정순영;김현수
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.262-266
    • /
    • 2001
  • The magnetic switching volume is known as an important parameter to understand the magnetization reversal process, thermal stability of the written information and media noise. This parameter is influenced significantly by the microstructure of the magnetic layer as well as underlayer. Therefore, we fabricated CoSm/Cr thin films with varying magnetic layer thickness under constant sputtering by using a dc magnetic sputtering machine. The magnetic layer thickness effect on the magnetic switching volume have been studied by the means of magnetic viscosity and dc demagnetization remanence curve mesurements. From these measurements, we found that the switching volumes increased with increasing the magnetic layer thickness, whereas the coercivity showed different behavior. These may be a result of the increased intergranular coupling and the larger volume fraction of the magnetic layer.

  • PDF

Economic Effect of Automatic Temperature Compensation (석유류제품 토출온도 보정에 따른 경제성 분석)

  • Bae, Khee-Su
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.358-367
    • /
    • 2012
  • The importance of physical changes in volume due to changes in temperature has been known for more than a century by the petroleum industry. To examine whether there are any differences between the economic effect of automatic temperature compensation and that of installation cost. The results of the analysis show that there are no ineffective in automatic temperature compensation installation. Analysis showed the increase of price oil will impact negatively on the automatic temperature compensation, appropriate level of economic cost and economic benefit should be calculated for the policy implementation in the future's study.

Rheological Behaviors of Concentrated Silica Particle Suspensionsprepared by Sol-Gel Method (솔젤법으로 제조된 고농도 실리카 입자 분산계의 유변학적 거동)

  • 양승만
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.24-30
    • /
    • 1998
  • 솔젤법을 이용하여 단분산의 실리카 입자를 제조하고 농도변화에 따른 실리카 분산 액의 유변학적 거동을 해석하였다. 단분산 실리카 입자의 제조는 솔젤법을 이용한 액상반으 으로 제조하였고 입자의 안정화를 위하여 입자표면에 실란커플링제를 코팅하여 유기용매에 서 안정성을 갖도록 하였다. 분산액의 농도에 따른 유변학적 거동을 조사하기 위하여 부피 분율( )이 0.05인 희박 분산계로부터 =0.55의 고농도 분산계를 제조하였다. 솔젤법을 통하 여 단분산 실리카 입자를 성공적으로 제조하였으며 실란커플링제인 ${\gamma}$-methacryloxypropyl triethoxysilane로 입자의 표면을 화학적 방법으로 처리하여 유기용매 상에서 알킬기의 작용 에 의한 hard-sphere'특성을 나타내도록 하였으며 동시에 분산안정성을 유지할수 있었다. 입자 분산계는 =0.25이하의 부피농도에서는 분산용매와 같은 뉴톤거동을 보여주었으며 이 이이상의 농도에서는 비뉴톤거동인 전단담화(shear thinning)현상과 high shear limiting viscosity를 나타내었다. 이결과는 Krieger-Dougherty 식을 따름이 확인되었으며 부피분율 =0.50정도까지도 이식이 잘적용됨을 확인하였다. 부피분율 =0.50 이상의 고농도 입자 분산계 는 급격한 점도의 증가와 함께 전단담화와 전단탁화(shear thickening)현상이 모두 관찰되었 다. 특히 전단탁화를 일으키는 특헝전단변형률(cr)이하의 전단변형률에서는 안정되고 빠른 점성반응(viscous response)을 보여주었으나 특성 전단변형률 부근과 이상의 전단변형률 영 역에서는 매우 불안한 거동이 보여짐을 확인하였다. 그러나 이러한 점도 거동은 가역적이며 전단변형률을 증가시킬때와 감소시킬 때의 유변학적 거동이 거의 일치하였다.

  • PDF