• Title/Summary/Keyword: 부착 모르타르

Search Result 113, Processing Time 0.02 seconds

Separation of Recycled Aggregates from Waste Concrete by Heavy Medium Separation (폐콘크리트에서 중액선별(重液選別)을 이용한 재생골재(再生骨材)의 선별(選別))

  • Lee, Myung-Gyu;Kwon, Ki-O;Gayabazar, Ganbileg;Kang, Heon-Chan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2007
  • The recycled aggregates produced from waste concrete by crushing and granularity adjusting processes only can't be used for structural aggregates because they display low density and high abrasion rate by including lots of mortar and cement paste. However, the recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

Evaluation of the Adhesion Stability According to the Backfilling Area of the Tile back of the Bathroom of an Apartment House (공동주택 욕실의 타일배면 뒤채움 피착면적에 따른 부착안정성 평가)

  • Kim, Bum Soo;Song, Je Young;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.14-15
    • /
    • 2021
  • Recently, the size of tiles used for bathroom walls in apartment houses is gradually increasing in size. The problem is that when these large-sized tiles are attached by the sticking method, due to the nature of the method, there is a concern about the stability of the attachment to the part (pupil) where the tile and the adhesive are not attached. The problem is serious as it leads to lawsuits in the outbreak court. In addition, it is urgent to verify the adhesion stability of the sticking method because secondary damage occurs due to a safety accident caused by the falling of the tile. Ministry of Land, Infrastructure and Transport [Investigation of defects in apartment houses, calculation of repair cost and defect determination criteria] ① The tile adhesion strength is 0.39N/mm2 or more and ② It is specified to fill 80% or more of the base area of the tile backside, but this is currently trendy. It is considered that large-sized tiles need to be verified from multiple angles, and as part of that, we intend to verify the adhesion stability according to the area to be attached to large-sized tiles.

  • PDF

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Reinforcement Effect of Cracked Concrete Tubes and Box Culverts by Installing Profile with Steel Stiffener and High Strength Mortar (스틸보강재가 부착된 프로파일 및 고강도 모르타르를 이용한 균열손상 콘크리트관의 보강효과)

  • Yeo, Sang Rok;Cho, Eun Sang;Hwang, Won Sup;Jeong, Jae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.69-78
    • /
    • 2008
  • In this study, in order to verify the reinforcement effects of the cracked concrete tubes and culverts, static load test was conducted. After the load carrying capacity of the original concrete tubes (nominal diameter 0.8 m, 1.0 m, 1.5 m) and box culverts (inner width 2.0 m. 2.5 m) was reduced by the cracking test, the cracked concrete specimens were strengthened by installing profile with steel stiffener and high strength mortar. And then, the maximum load tests were conducted the renewal concrete tubes and box culverts. According to the method application, the load carrying capacity increased 1.66~3.50 times than it of the original tubes before applying the method. In case of the original box culverts, the load carrying capacity increased 1.66~3.10 times than the case before installing profile and high strength mortar. Also non-linear analysis was carried out by using the commercial FEM program of ABAQUS 6.6. Solid (C3D8R) elements and concrete damage plasticity option was applied to the analysis. For reflecting confined reinforcing bars in the analysis, the composite material properties were used.

Evaluation of Split Tension Fatigue Test Method for Application in Concrete (콘크리트의 쪼갬인장 피로실험방법 제안 및 적용성 평가)

  • Kim Dong-Ho;Lee Joo-Hyung;Jeong Won-Kyong;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.27-35
    • /
    • 2004
  • Most of concrete fatigue tests currently used are flexural tension or compression methods to investigate the tensile or compressive properties, respectively. However, the concrete pavement or concrete slab is actually subjected to a combined stress condition such as biaxial or triaxial. The split tension test may result in similar stress condition to biaxial stress condition. The purposes of this study were to evaluate the split tension fatigue test method for application in concrete. These were done by a finite element analysis and experimental series. The results were as follows: The optimum configuration of split tension fatigue test was a cylinder of 15cm in diameter and 7.5cm in thickness, which had a little different thickness compared to the KS standard cylinder of ${\phi}15{\times}30cm$. The concrete stress ratio of compressive against horizontal from FEA was 3.1, while that from theory was 3.0. The stress distributions of mortar and steel were almost similar at different thicknesses. The measured static split tensile strengths of concrete and mortar were quite similar at 30cm and 7.5cm thickness cylinders. The measured stress-strain relationship showed their consistency at all specimens regardless of thickness, and confirmed the results from FEA. As a results, the concrete split tension specimen, cylinder of 15cm in diameter and 7.5cm in thickness, could be used at fatigue test because of its accuracy, simplicity and convenience.

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

The Experimental Study on the Plaster mortar using Recycled fine aggregate (순환잔골재를 사용한 미장용 모르타르에 관한 실험적 연구)

  • Lee, Dae-Geun;Han, Sang-Il;Choi, Duck-Jin;Kang, Cheol;Kim, Jun-Seok;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.473-476
    • /
    • 2008
  • The use of the recycled fine aggregate to the material of structural concrete is not easy currently because there are some problems, such as the difficulty of quality control and the badness of chemical and physical property other than river sand, crushed fine aggregate. To use of recycled fine aggregate, many researches on the recycling of recycled fine aggregate have been studying until today. However, the result of the research is little except for some results. Therefore, the purpose of this study is to confirm the possibility of use of recycled fine aggregate for raw material of plaster mortar. In this study, various tests were performed such as flow, air content, unit weight, bond strength, and compressive strength test to evaluate the effect according to the substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength improved with the increase of replacement ratio of recycled fine aggregate. In the other side, flow and air content are decreased according to replacement ratio of recycled fine aggregate. The result of this study could be used as the basic data for the recycling of recycled fine aggregate.

  • PDF