• Title/Summary/Keyword: 부착미생물

Search Result 315, Processing Time 0.021 seconds

Diversity of Myxobacteria in Soil Samples from Asansi and Uponeup in Korea (아산시와 우포늪 토양의 점액세균 다양성)

  • Chung, Jin-Woo;Kim, Jin-Woo;Cho, Kyung-Yun
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.405-408
    • /
    • 2010
  • Diversity of myxobacteria in five soil samples from Asansi and Uponeup in Korea was explored by means of polymerase chain reaction (PCR) using primers that specifically bind 16S rDNA of myxobacteria. DNA sequence analysis of 76 PCR fragments containing myxobacterial 16S rDNA revealed five putative novel myxobacterial genera whose 16S rDNA sequences shared <95% sequence identity with those of the type strains. This finding indicates the presence of many uncultured and unidentified myxobacterial species in Korean soil.

Physicochemical factors affecting the adsorption of E. coli in estuarine sediments (하구퇴적토 환경에서 E.coli의 부착에 영향을 주는 물리화학적 요인)

  • 이건형
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.237-246
    • /
    • 1988
  • The higher bacterial numbers on clay than on sand were caused by different environmental factors. Such factors affecting the adsorption of E. coli ATCC 11775 in the sediment as follows; optimal pH range for the adsorption of E. coli ATCC 11775 was pH 7.5-pH 9.5. E. coli ATCC 11775 were shown maxima in the salinity of 18.$75%_{o}$ on sand type sediment and $12.5%_{o}$ on clay type sediment. Bacteria attached better to clay typed sediment than to sand typed sediment when organic substance was eliminated. Beef extract of 0.5%-1% concentration was found to promote the attachment of E. coli ATCC 11775 effectively. Peptone of 0.5% was enganced the attachment on the clay, and peptone of 1.3%-5%, on the sand. E. coli ATCC 11775 was found to adsorb onto benthonite with the highest efficiency and on celite with the lowest efficiency. Efficiency of adsorption by inorganic ions was shown due to higher values of ion. Adsorption was achieved in the order of $Al^{3+}, Ca^{2+}, Na^{+}$.

  • PDF

A Study on the Adherence of Oral Streptococci to Saliva- or Protein-Coated Hydroxyapatite Beads (타액 및 단백 도말한 Hydroxyapatite 비드에 구강 Streptococci의 부착에 관한 연구)

  • 최선진
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.259-264
    • /
    • 1989
  • The adherence of $^{3}H$-labeled oral streptococcal cells to protein-coated hydroxyapatite (HA) beads was studied by a standard adherence assay. The adherence equilibrium for S. mutans 10449 occured in about 2 hrs. The cell numbers adhering to SHA was 50% less than those on bare HA. Sailva from different subjects had varying effect on bacterial adherence. The use of saliva adsorbed with homologouis bacteria decreased S. mutans adherence by 38% ; this indicates the presence of salivary agglutinin in acquired pellicle formed on HA. Animal sera and BSA decreased S. sanguis adherence. BSA concentration as high as 10mg/ml caused up to 87% adherence inhibition. The desorption experiment of adhered bacteria confirmed the previous reports that the adhesive sites on HA beads for S. mutans were different from those for S. sanguis and that S. mutans could enhance the adherence of S. sanguis but not vice versa.

  • PDF

Bioconversion process를 이용한 aspartame 생산연구

  • 최홍규
    • The Microorganisms and Industry
    • /
    • v.17 no.2
    • /
    • pp.28-30
    • /
    • 1991
  • APM의 화학적, 효소적 합성방법의 선택은 각기의 장단점을 비교 검토한 후 결정해야 할 문제로서, 수율, 공정의 효율성, 작업환경, 경제성 등의 여러 요인이 영향을 줄 수 있으나, 최근의 연구동향 및 산업적 생산의 추이는 효소를 이용한 bioconversion process에 의한 방식으로 나아가는 듯 하다. 결론적으로 bioconversion process에 의한 APM의 생산은 반응매질로써 유기용매의 사용이 불가피하므로 효소의 안정성을 증가시켜 장기간 사용할 수 있는 신기술의 개발이 필요하며 기존의 고정화 기술은 그 좋은 예가 될 수 있다. 또한 보호기의 도입과 제거과정이 보다 용이해야하며 더 나아가서 보호기의 부착없이도 반응을 가능케하는, 기질에 대한 특이성이 높은 새로운 효소(예를 들어 exopeptidase를 사용하면 기질에 보호기를 붙일 필요가 없으므로 화학적 방법에 비해 훨씬 유리하다)의 screening이 절실하다. 아울러 유기용매로 인한 효소의 deactivation mechanism의 규명과 반응기 운전 system의 개발이 요구된다 하겠다.

  • PDF

Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1 (락토바실러스 아시도필러스 CBT LA1 생균과 사균체의 세포부착력, 자가응집력, 소수성 상호작용력, LPS 결합력에 대한 평가)

  • Shin, Joo-Hyun;Lee, Joong-Su;Seo, Jae-Gu
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Although studies on probiotics have been performed mostly with viable microbes, the beneficial functions of dead or heat-killed form of probiotic strains have also been examined. In this study, live and heat-killed forms of Lactobacillus acidophilus CBT LA1 were investigated in vitro and in vivo to evaluate the properties necessary for gut barrier protection. Cell surface hydrophobicity (CSH), autoaggregation (AA), cell adhesion, and lipopolysaccharide (LPS)-binding properties were evaluated. In addition, the suppressive effect on LPS-induced interleukin (IL)-8 expression was investigated in HT-29 cells. To identify optimal conditions for CBT LA1 to adhere to HT-29 cells, CBT LA1 cells were heat-treated at 80, 85, 90, 95, 100, or $121^{\circ}C$ for 10 min; cells treated at $80^{\circ}C$ for 10 min showed the highest adhesion. Heat-killed bacteria at $80^{\circ}C$ showed higher levels of LPS-binding, CSH, AA, adhesion to HT-29, and suppression of IL-8 expression than did live CBT LA1. In vivo imaging was performed to evaluate the ability of live or heat-killed CBT LA1 to remove LPS from the intestine in a rat model of infection. At 16 h after infection, fluorescence from FITC-conjugated LPS had mostly disappeared from the intestine of the rats administered with live or heat-killed CBT LA1; the effect was greater with heat-killed CBT LA1 at $80^{\circ}C$. These results suggest that heat-killed CBT LA1 as well as its live form can be applied as a pharmabiotic for protection of the gut barrier.

Kinetics of Intracellular Adenosine Deaminase to Substrate Analogs and Inhibitors in Aspergillus oryzae (Aspergillus oryzae의 세포내 효소인 Adenosine Deaminase의 기질 유사체와 억제물질에 대한 반응속도론적 분석)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 1994
  • Kinetic parameters of various substrates and inhibitors were measured to elucidate the binding requirements of the active site of intracellular adenosine deaminase (ADA) in Aspergillus oryzae. 3'-Deoxyadenosine was the best substrate according to the value of relative kcat/$K_m$. Purine riboside was found to be the strongest inhibitor with the $K_i$ value of $3.7{\times}10^{-5}$M. Adenine acted neither as a substrate nor as an inhibitor, suggesting the presence of ribose at N-9 of adenosine was crucial to binding. ADA also catalyzed the dechlorination of 6-chloropurine riboside, generating inosine and chloride ions. Substrate specificity of 6-chloropurine riboside was 0.86% of adenosine. Purine riboside, a competitive inhibitor of ADA, inhibit the dechlorination with similar $K_i$ value, suggesting that the same binding site was involved in deamination and dechlorination. Among the sulfhydryl group reagents, mercurials, pchloromercuribenzoate (PCMB), mersalyl acid and $HgCl_2$ inactivated the enzyme. Mersalyl acid-inactivated ADA was reactivated by thiol reagents, but PCMB-inactivated enzyme was not. When ADA was treated with the mercurial reagents, the inhibition constants and inhibition patterns were determined. Each inhibition was competitive with substrate. The $K_i$ values of these mercurial reagents were lower in 10 mM phosphate buffer than in 100 mM phosphate buffer, showing phosphate dependency.

  • PDF

Growth of Candida albicans Biofilm is Inhibited by Salvia miltiorrhiza (단삼에 의한 Candida albicans 바이오필름 발달의 억제)

  • Lee, Heung-Shick;Kim, Younhee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.465-472
    • /
    • 2019
  • Candida albicans is an opportunistic human pathogen that causes infections. Candidiasis is often related to antifungal resistance because the pathogen has the ability to form biofilms. In a previous study, we found that the Salvia miltiorriza ethanol extract demonstrated anticandidal activity by altering membrane permeability and inhibiting the cell wall synthesis in C. albicans. Our results here demonstrate that $78{\mu}g/ml$ of the S. miltiorriza extract significantly diminished the early stage biofilms formed by 10 clinical C. albicans isolates by 51.3%; this was analyzed by 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) reduction assay. The effect of the S. miltiorrhiza extract on the adhesion of C. albicans cells to polystyrene plates and germ tube formation was examined via microscopic investigation. Although the density of the adhered cells was remarkably reduced up on incubation with $39{\mu}g/ml$ S. miltiorrhiza extract, germ tube formation by C. albicans was rarely affected. Quantitative real-time PCR analysis showed that the S. miltiorrhiza extract downregulated the expression of C. albicans hypha-specific genes, EAP1 by 34.7% (p < 0.001), ALS1 by 45.0% (p < 0.001), ALS3 by 48.1% (p < 0.001), and ECE1 by 21.3% (p = 0.006), respectively. Our data suggest that the S. miltiorrhiza ethanol extract significantly inhibited the early stage of biofilm formation by C. albicans by interfering with cell adhesion, by downregulating EAP1, ALS1 and ALS3, and presumably by modifying the cell wall and membrane structure.

Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations. (다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화)

  • Kwon, Jae-Hyeong;Choi, Soo-Jung;Cha, Jae-Hwan;Kim, Hyo-Soo;Kim, Ye-Jin;Yu, Jae-Cheul;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.

해조류 김 Porphyra yezoensis 엽체로 부터 산에 내성을 가지는 유전자의 분리

  • Long-Guo JIN
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.199-200
    • /
    • 2001
  • 해조류중 특히 방사무늬 김 (Porphyra yezoensis)의 양식기술은 인공채묘기술이 개발된 이래 양식 및 가공분야의 많은 기술적 진보를 거듭해 오고있으며 양식장은 천해 해역으로 하천수의 유입으로 인한 풍부한 영양염류의 공급을 받고있는 지역에 있다. 이러한 영양염류는 김의 생장촉진에 도움을 주는 반면에 여러 가지 미생물, 미세조류, 부착조류 등의 증식도 함께 촉진하여 결과적으로 김 성장에 대한 영양분의 경쟁관계, 질병유발 김 양식의 생산력 저하등의 문제점들을 동시에 유발하고 있다. (중략)

  • PDF

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF