본 논문에서는 심전도 신호로부터 부정맥을 진단하는 방법으로 심박수 변이도와 퍼지 신경망을 이용하는 방안을 제시하고 있다. 제안한 부정맥 진단 알고리즘은 32개 RR 간격의 심박수 변이도, 즉 평균 25초 내외의 심박수 변화를 이용하여 부정맥을 진단하는 알고리즘이다. 부정맥 진단 알고리즘은 32개 RR 간격을 이용하여, 통계적 특징 6개를 추출한 후, 가중 퍼지소속함수 기반 신경망으로 학습하여 정상 구간과 부정맥 구간을 분류한다. 부정맥 진단 알고리즘은 Tsipouras 논문군(48개 레코드)에서 SE와 SP 각각 80% 이하의 성능을 보이는 기존연구와는 달리, SE는 88.75%, SP는 82.28%, 전체 분류율은 86.31%의 신뢰성 있는 결과를 나타낸다.
본 논문은 유전알고리즘을 이용하여 부정맥 진단의 최적화된 입력을 구성하는 방법을 제시한다. 심전도 신호의 특징을 추출하기 위해 웨이블릿 변환이 널리 사용되고 있지만, 추출된 특징들의 선택과 최적화의 문제에 대해서는 명쾌한 해결책을 제시하지 못하고 있다. 심전도 신호는 연속 웨이블릿 변환을 이용해 5레벨로 분해되었으며, 각 서브밴드에서 추출된 계수들은 부정맥 진단을 위한 특징으로 쓰이게 된다. 웨이블릿 변환을 통해 추출된 특징들(feature)은 유전자 알고리즘과 중회귀 분석을 동하여 부정맥 진단을 위한 최적화된 특징조합이 결정되었다. 본 연구를 통해 특정레벨의 어떤 계수가 부정맥 진단에 크게 영향을 미치는지 판단할 수 있었으며 입력의 차원감소는 연산시간의 축소를 가져왔고 분류정확도를 향상시켜 분류기의 성능을 증대시켰다.
심장의 활성 근육의 움직임에 의하여 발생되는 전기적 변화량을 나타내는 심전도는 부정맥 또는 허혈성 심장질환을 진단하는데 널리 활용되고 있다. 특히 심실빈맥(Ventricular Tachycardia) 또는 심실세동(Ventricular Fibrillation)과 같이 치명적인 심장리듬이 발생하기 이전에, 심실조기수축(Ventricular Premature Contraction)을 검출하여 생명을 위협할 수 있는 부정맥을 조기에 진단할 수 있는 연구들이 일부 진행되고 있다. 이에 따라서 본 연구에서는 심전도 신호의 R-R 간격 정보와 R-peak 정보의 진위성을 판단하여 PVC 부정맥 패턴뿐만 아니라 PVC 파형이 연속적으로 진행되는 PVC-RUNs을 효율적으로 검출할 수 있는 부정맥 진단 알고리즘을 제안하고자 하였다.
부정맥은 심각한 합병증을 초래할 수 있는 심장 질환으로, 조기 진단이 중요하다. 본 연구는 부정맥 진단의 자동화를 위해 Wavelet 변환과 합성곱 신경망(CNN)을 결합한 새로운 접근 방법을 제안한다. MIT-BIH Arrhythmia Database 와 P-Wave Annotations 를 사용하여 ECG 신호에서 QRS complex 와 P-wave 를 동시에 검출하는 전처리 방법을 개발하였다. Wavelet 변환 기반 전처리와 다양한 ECG 특징 추출 기법 결합한 1 차원 CNN 모델을 적용한 결과, 93%의 전체 정확도와 평균 0.9906 의 AUC 점수를 달성하였으며, 특히 심실 부정맥에 대해 96.8%의 높은 재현율을 보였다. 이는 현재 임상에서 사용되는 많은 자동화된 ECG 분석 시스템들의 miss reading 확률(10-15%)보다 낮은 7%의 miss reading 확률을 나타낸다. 본 연구는 ECG 데이터의 효율적인 해석과 부정맥의 조기 진단 가능성을 입증하였으며, 임상 현장에서의 적용 가능성을 제시한다. 향후 연구에서는 다양한 데이터셋 검증과 실시간 처리 능력 평가를 통해 실제 임상 환경에서의 적용성을 높일 계획이다.
본 논문에서는 먼저 심전도 진단을 위한 처리 과정별 관련 연구내용을 살펴본 후 심전도 신호의 리듬 특징을 이용하여 부정맥을 검출 및 분류하는 방법을 제안한다. 특징 추출에서는 리듬 구간에 대하여 동일성 및 규칙성 등의 리듬 및 심박 분포에 관련되는 특징을 추출하게 되며, 리듬 분류에서는 리듬 구간의 특징에 대하여 미리 구축된 규칙 베이스를 이용하여 리듬 유형을 분류하게 된다. MIT-BIH 부정맥 데이터베이스의 모든 리듬 유형에 대한 실험을 통하여 정상 리듬 규칙만으로도 100% 부정맥 검출 성능을 보였으며, 부정맥 리듬 규칙으로는 유형 분류 적용 가능성을 확인하였다.
심전도 신호 분석 및 부정맥 분류는 환자를 진단하고 치료하는데 중요한 역할을 한다. 부정맥은 맥박이 불규칙한 상태로 심실빈맥(VT)이나 심실세동(VF) 환자에게 심각한 위협이 될 수 있다. 심방조기수축(APC)과 상심실성빈맥(SVT), 심실조기수축(PVC)은 심실빈맥(VT)만큼 치명적이지는 않지만 심장질환을 진단하는데 중요한 부정맥이다. 본 논문은 2~3개의 부정맥 분류만을 고려한 기존의 방법을 극복하고 다양한 부정맥을 분류하기 위한 새로운 방법을 제시한다. 심전도 신호의 특징 추출을 위해서 EMD 방법으로 신호를 분해하여 IMFs를 얻는다. 입력 데이터의 양은 분류기 성능에 영향을 미치므로 신호 데이터의 차원을 감소시키기 위해 Burg 알고리즘을 IMFs에 적용하여 AR 계수를 구하고 여러 개의 이진 분류기를 결합한 다중 클래스 SVM의 입력으로 사용한다. 최적의 SVM 성능 파라미터를 선택하고 부정맥 분류에 적용한 결과 검출의 정확성은 96.8%~99.5%였다. 실험 결과는 제안한 EMD 방법에 의한 전처리 및 특징 추출과 다중 클래스 SVM에 의한 부정맥 분류의 유용성을 보여준다.
최근 심전도 (ECG) 신호를 사용하여 심장병을 진단하는 많은 연구가 이루어지고 있다. 이러한 심전도 신호는 비정상적인 심장 상태를 나타내는 부정맥을 모니터링하고 진단하는 데 유용하게 쓰인다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 ECG 신호에 대하여 부정맥을 분류하는 시스템을 제안한다. 제안하는 신경망 알고리즘은 부정맥 신호의 특징을 세밀하게 추출하도록 4개의 합성곱 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. MIT-BIH 부정맥 데이터베이스에 대해 학습한 신경망은 시뮬레이션을 통해 99% 이상의 정확도의 분류 성능을 가진다는 것을 보여준다. 비교적 합성곱 커널의 개수가 많을수록 ECG 신호의 특성을 더 잘 나타내기 때문에 좋은 성능을 나타내는 것으로 분석되었다. 또한 제안된 신경망을 활용한 실제 시스템을 구현하여 실시간으로 부정맥을 분류하는 결과를 검증하였다.
최근 IT기술이 발달함에 따라 다양한 생체신호 측정 기기에 대한 연구 및 관심이 높아지고 있으나, 가장 대표적인 생체 신호 중 하나인 심전도, 특히 부정맥 신호 검출과 관련한 연구는 미비한 현실이다. 부정맥은 그 발병원인이 다양하며 발병이후 예후가 좋지 않으므로 조기진단을 통한 예방치료가 최선이다. 하지만 부정맥을 진단하기 위한 도구인 24시간 홀터 심전계는 사용지속시간의 제약, 일상생활로 인한 동잡음 분석의 어려움, 위험상황에서 사용자의 실시간 알람 기능에 단점을 보인다. 본 연구에서는 장시간 연속 측정이 가능한 심전도 및 맥박 모니터링 기기와 실시간 모니터링 앱, 분석용 소프트웨어를 개발하였으며, 측정한 값의 경향성을 확인하였다. 향후 연구에서는 심전도 신호 측정 분석의 정량적 결과 도출에 관한 연구가 필요하며, 이를 바탕으로 하는 부정맥 신호 검출 알고리즘 개발과 관련한 추가 연구를 진행해야 한다.
연구배경 : 개심술 후의 부정맥은 빈번하게 발생하는 합병증이며 그 종류도 다양할 뿐 아니라, 수술후 발생하는 부정맥은 심박출량의 저하 등 심각한 결과를 초래할 가능성이 있다. 재료 및 방법 : 본 연구는 이러한 부정맥의 예방과 치료의 방침을 결정하는데 기본적인 자료를 제공하고자 1994년 6월부터 1995년 5월까지 1년간 서울대학교병원 흉부외과에서 개심술을 시행 받은 성인 환자들을 대상으로 술후 부정맥의 양상을 전향적으로 분석하여 위험인자를 유추하였다. 결과 : 총 302명을 대상으로 하였는데, 그 중 남자가 150명이었고 여자는 152명이었으며, 평균 연령은 43.9세 (16세부터 75세까지) 였다. 대상환자 모두 술전 및 술후 표준 12-lead EKG 및 중환자실에서의 24시간 심전도 감시장치로 부정맥을 진단하였으며 수술직후 집중감시병동에서는 동맥혈 가스분석 및 혈중 potassium 농도를 측정하여 이상이 있으면 교정하였고 단순히 산혈증이나 저칼륨혈증에 의한 부정맥은 연구대상에서 제외하였다. 술후 부정맥의 전체 발생률은 58.3%이었는데, 판막 재수술의 경우 부정맥이 77.8%에서 나타났고, 단순 판막 수술, 관상동맥 우회술, 대동맥 수술, 선천성 심기형의 수술후의 부정맥 발생률들은 각각 70.8%, 45.3%, 40.0%, 29.5% 이었다. 연령별 발생은 의미있는 차이를 보이지 않았으며 심정지액의 종류도 의미있는 차이는 보이지 않았다. 반면에 수술의 종류, 술전 부정맥의 유무, 체외순환 및 대동맥 차단시간, 그리고 술전 시행한 심초음파상의 좌심실 확장기말과 수축기말 내경, 좌심방의 내경 등은 부정맥의 발생률과 통계적으로 유의한 상관관계를 보여주었다 (p< 0.05). 결론 : 향후 질병, 수술방법 등이 균질화된 집단을 선정하여 전향적인 연구를 진행함으로써 개심술후 부정맥의 발생, 치료 및 예방에 관한 보다 정확한 결론에 접근할 수 있을 것으로 생각한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.