• Title/Summary/Keyword: 부재-수준

Search Result 478, Processing Time 0.038 seconds

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

Comparison of Flexural Tensile Behaviors with Different Filling Directions in Producing UHPCC Flexural Member (UHPCC 휨부재 제작 시 타설 중 충전방향에 따른 휨인장거동의 변화)

  • Kang, Su-Tae;Ryu, Gum Sung;Koh, Kyung Taek;Kim, Sunyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.447-455
    • /
    • 2014
  • This study was intended to estimate the efficiency of inducing fiber arrangement in UHPCC (Ultra High Performance Cementitious Composites). For the purpose, UHPCC members produced by several different placing methods according to flow characteristics were prepared; flexural behaviors were compared and correlation between the flexural behavior and the characteristics of fiber arrangement was investigated. Test results showed that placing method for inducing specific fiber arrangement had a considerable influence on the flexural performance. The standard specimen in which fibers are induced to be directed parallel to the principle tensile direction presented higher flexural tensile strength but lower variation. Therefore it should be considered that the flexural tensile strength actually developed in UHPCC member may be highly different and in lager variation. The qualitative variation of fiber arrangement according to the flow of UHPCC was also predicted considering the flow pattern and the boundary effect; the prediction provided good explanation to the difference in the flexural behavior according to the induced flow.

The Fatigue Strength of Steel Bridge Components Attached with Non-load Carrying Out-of Plane Gusset Plate (하중 비전달형 면외 거셋판이 부착된 강교량 부재의 피로강도)

  • Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.779-788
    • /
    • 1998
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. Considering the measured stress fatigue cracking initiated at toe of the transverse fillet weld joining the gusset plates to the web because of the stress concentration that developed as a result of the geometric conditions and the greater probability of microscopic discontinuities at the fillet weld toe A comparison was made of the stress calculated by considering geometric aspect of bead and measured at same position. They indicate that the geometric conditions of the weld toe result in similar stress concentration on both FEM models and test results. The test results were compared with the fatigue criteria of AASHTO, JSSC specifications. Specimens of 80 and 150mm gusset plate configuration tested either respectively equaled or exceeded the fatigue resistance provided by category D and E of the AASHTO specification. It also satisfied the category F and G of JSSC. Both WG1 and WG3 specimen tend to provide S-N curves with a store near -0.3 less than AASHTO and JSSC.

  • PDF

The Characteristics of Curvature Ductility Factor of Reinforced Concrete Hollow Section Beams (철근콘크리트 속빈 단면 보의 곡률연성지수 특성)

  • Lee, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6542-6549
    • /
    • 2013
  • In highly elevated piers and long span beams, a hollow section is often used to reduce the self-weight and increase the flexural rigidity of members. Numerical analysis was conducted to obtain the moment-curvature curves and curvature ductility factor for the RC hollow section beams under a range of hollow portion sizes and reinforcement conditions in the upper flange and web. The curvature ductility factor was constantly maintained until the hollow portion size($b_i/b_o/h_i/h_o$) was less than or equal to 0.5. The curvature ductility factor decreased sharply if ($b_i/b_o/h_i/h_o$) was 0.7 or more. The curvature ductility factor of the beam decreased if reinforcement was provided in the web of the RC hollow section beam. To obtain the same level of the ductility factor as the singly reinforced section, the reinforcement should be provided in the upper flange as much as the web reinforcement.

Trends of Research and Practical Use on Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete (고강도콘크리트의 폭렬대책공법에 대한 국내외 현황과 성능적 구조내화설계를 위한 과제)

  • Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.935-940
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete.

  • PDF

Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape (원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가)

  • Ahn, Jin Hee;Nam, Dong Kyun;Lee, Won Hong;Huh, Jungwon;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.213-222
    • /
    • 2016
  • For a steel structure with long service period, structural performance can be changed or decreased by corrosion damage occurred under severe corrosion environment condition. In this study, to examine compressive strength and behavior of circular steel member depending on corrosion damage, compressive loading tests were conducted using circular steel member with artificial corrosion damage which was applied by mechanical process and hand drill. From test results, local corrosion area and pattern is related to their structural performance. Their lcoal bucklings were occurred near artificially sectional damaged part. Reduction in compressive strength of circular steel member was also suggested according to their corroded part and damage.

Cost Analysis for Fire Protection on Structural Members of Residential Steel Building using Fire Engineering Design (내화설계법에 따른 철골조 아파트의 내화피복비용 연구)

  • Kwon, In-Kyu;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.81-89
    • /
    • 2010
  • In general, fire resistance is determined through the building' uses and stories. But recently a fire engineering design that is done by the calculation of design fires from the fire cell and an evaluation of stabilities for structural behavior at fire condition have applied to almost of countries as a major alternative against a prescriptive fire design. To adopt and utilize the fire engineering design into Korea, at first, we evaluated structural stability of 21st stories steel residential building at fire condition through fire engineering design and secondly the fire protection cost was analyzed with fire engineering design method and the prescriptive one, respectively. No fire protection materials for satisfaction of building law at structural members such as columns and beams were needed and about 90 % of fire protection cost was saved.

Field Survey on the Construction Errors for the Members of Reinforced Concrete Structures (현장조사를 통한 철근콘크리트 구조 부재의 시공오차에 관한 연구)

  • Yoon, Sang-Chun;Jee, Nam-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.201-208
    • /
    • 2010
  • Information on the distribution characteristics of construction errors is very important to determine the member factors, which are to be introduced in a new Korean design code for reinforced concrete structures. The new design code, which is under development for reinforced concrete structures, is based on the performance design concept. The construction errors of reinforced concrete members are mainly caused by the firmness and dimensional accuracy of forms, the arranging condition of reinforcing bars, the pouring and compaction methods of concrete, the skills of field workers, and the experience of supervisors. To find out the construction errors of reinforced concrete structures already built in Korea, a field survey for cover thickness, effective depth of reinforcement, the thickness of slabs and walls, and the dimension of beams and columns has been performed. Based on the survey, which is the first time in Korea, the analysis results are presented. The measuring methods for the construction errors, which have been established through the laboratory tests, are also presented. In addition, the measured construction errors from the survey are compared with the allowable tolerances in the current domestic and foreign specifications.

New Approaches for Calibrating Material Factors of Reinforced Concrete Members in Korean Highway Bridge Design Code (Limit State Design) and Reliability Analysis (도로교설계기준(한계상태설계법)의 콘크리트부재 설계를 위한 재료계수 결정법 및 신뢰도 분석)

  • Lee, Hae Sung;Song, Sang Won;Kim, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • This paper brings up fallacy of material factors specified for the design of concrete members in the current Korean limit state design code for highway bridges, and proposes new material factors based on a robust optimization scheme to overcome the fallacy. It is shown that the current load factors in the code and the proposed material factors lead to a much higher reliability index than the target index. The load factors are adjusted to yield the target reliability index using the inverse reliability analysis. A reliability-based approach following the basic concept of Eurocode is formulated to determine material factors as well as load factors. The load-material factors obtained by the proposed reliability-based approach yield a lower reliability level than the target index. Drawbacks of the basic concept of Eurocode are discussed. It is pointed out that differences in the uncertainties between materials and members may cause the lower reliability index of concrete member than the target.

An Experimental Study on the Estimation of Transfer Length of Strand in the Prestressed Hollow Core Slab (프리스트레스트 중공 슬래브 강연선의 전달길이 평가에 대한 실험적 연구)

  • Jung-Soo, Lee;Jong-Hyun, Ryu;Seung-Hee, Kwon;Jin-Kook, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.395-401
    • /
    • 2022
  • In this study, the transfer length of strand was measured for three types of HCS member(H200, H320, and H400) manufactured by the pretension method. Strain gauges were attached in longitudinal direction at regular intervals on the sides of the HCS members, and the strain was measured during the cutting process of HCS. The stain at the cutting point was zero, and gradually increases in the central direction of the member, converging to a constant value after passing the transfer length. In the case of H200 members in which the strands were arranged one by one, the transfer lengths were formed within the range of the design equation (up to 762 mm). The transfer length of the H320 member and the H400 member, in which three strands were arranged, was higher than the design range (850 mm or more).