• Title/Summary/Keyword: 부유식 해상풍력

Search Result 74, Processing Time 0.021 seconds

Prediction of Seabed Topography Change Due to Construction of Offshore Wind Power Structures in the West-Southern Sea of Korea (서남해에서 해상풍력구조물의 건설에 의한 해저지형의 변화예측)

  • Jeong, Seung Myung;Kwon, Kyung Hwan;Lee, Jong Sup;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.423-433
    • /
    • 2019
  • In order to predict the seabed topography change due to the construction of offshore wind power structures in the west-southern sea of Korea, field observations for tides, tidal currents, suspended sediment concentrations and seabed sediments were carried out at the same time. These data could be used for numerical simulation. In numerical experiments, the empirical constants for the suspended sediment flux were determined by the trial and error method. When a concentration distribution factor was 0.1 and a proportional constant was 0.05 in the suspended sediment equilibrium concentration formulae, the calculated suspended sediment concentrations were reasonably similar with the observed ones. Also, it was appropriate for the open boundary conditions of the suspended sediment when the south-east boundary corner was 11.0 times, the south-west was 0.5 times, the westnorth 1.0 times, the north-west was 1.0 times and the north-east was 1.0 times, respectively, using the time series of the observed suspended sediment concentrations. In this case, the depth change was smooth and not intermittent around the open boundaries. From these calibrations, the annual water depth change before and after construction of the offshore wind power structures was shown under 1 cm. The reason was that the used numerical model for the large scale grid could not reproduce a local scour phenomenon and they showed almost no significant velocity change over ± 2 cm/s because the jacket structures with small size diameter, about 1 m, were a water-permeable. Therefore, it was natural that there was a slight change on seabed topography in the study area.

Floating offshore wind turbine system simulation

  • Shi, Wei;Park, Hyeon-Cheol;Jeong, Jin-Hwa;Kim, Chang-Wan;Kim, Yeong-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

An Optimization Model for O&M Planning of Floating Offshore Wind Farm using Mixed Integer Linear Programming

  • Sang, Min-Gyu;Lee, Nam-Kyoung;Shin, Yong-Hyuk;Lee, Chulung;Oh, Young-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.255-264
    • /
    • 2021
  • In this paper, we propose operations and maintenance (O&M) planning approach for floating offshore wind farm using the mathematical optimization. To be specific, we present a MILP (Mixed Integer Linear Programming that suggests the composition of vessels, technicians, and maintenance works on a weekly basis. We reflect accessibility to wind turbines based on weather data and loss of power generation using the Jensen wake model to identify downtime cost that vary from time to time. This paper also includes a description of two-stage approach for maintenance planning & detailed scheduling and numeric analysis of the number of vessels and technicians on the O&M cost. Finally, the MILP model could be utilized in order to establish the suitable and effective maintenance planning reflecting domestic situation.

Evaluation Study of LCOE for 8 MW Offshore Floating Wind Turbine in Ulsan Region (울산 앞바다 8 MW급 부유식 해상풍력터빈의 LCOE 연구 )

  • Dong Hoon Lee;Hee Chang Lim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2023
  • The commercialization has been of great importance to the clean energy research sector for investing the wind farm development, but it would be difficult to reach a social consensus on the need to expand the economic feasibility of renewable energy due to the lack of reliable and continuous information on levelized cost of Energy (LCOE). Regarding this fact, this paper presents the evaluation of LCOE, focusing on Ulsan offshore region targeting to build the first floating offshore wind farm. Energy production is estimated by the meteorology data combined with the Leanwind Project power curve of an exemplar wind turbine. This work aims to analyze the costs of the Capex depending on site-specific variables. The cost of final LCOE was estimated by using Monte-Carlo method, and it became an average range 297,090 KRW/MWh, a minimum of 251,080 KRW/MWh, and a maximum of 341,910 KRW/MWh. In the year 2021, the SMP (system marginal price) and 4.5 REC (renewable energy certificate) can be paid if 1 MWh of electricity is generated by renewable energy. Considering current SMP and REC price, the floating platform industry, which can earn around 502,000 KRW/MWh, can be finally estimated highly competitive in the Korean market.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

Feasibility Study for Development of New Stationkeeping System (Flapping Foil을 적용한 위치유지시스템 개발을 위한 운동시험)

  • Yu, Young-Jae;Sim, Woo-Lim;Kumar, Rupesh;Kim, Dong-Ju;Shin, Hyun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, experiments with a floater using flapping foils were performed to develop a new station keeping system that can maintain its position in waves without mooring lines. The foils applied to this system generate thrust using wave energy. In this experiment, the motion of the floater was analyzed in three different wave periods. Sixteen foils were attached to the cylindrical floater. The thrust of each foil was controlled by changing its azimuth angle, and three cases were compared. Based on the previous data, we made more precise measurements and found an optimal model for stationkeeping under each wave condition. We verified the potential of this new stationkeeping system using flapping foils, and conclusions were drawn from the results.

Conceptual Design of Moored Floating Meterological Buoy with LiDAR (LiDAR가 탑재된 계류된 부유식 기상 부이의 개념 설계)

  • Kim, Jeongrok;Lee, Hyebin;Cho, Il-Hyoung;Kyong, Nam-Ho;Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • This paper reports the conceptual design process for a floating metocean data measurement system (FMDMS) for measuring wind information at sea. The FMDMS consists of three circular pontoons, columns, and a deck, which the LiDAR (lighting detection and ranging) is installed on. The dynamics of the mooring lines and motion responses of the FMDMS were analyzed using commercial codes such as WAMIT and OrcaFlex. One design criterion of the developed FMDMS was to maintain the motion responses as small as possible to enhance the LiDAR's accuracy. Starting with the preliminary design parameters such as the FMDMS's principal dimensions, weight, and important parameters of mooring system, we checked whether the FMDMS met the design requirements at each design stage, and then made modifications as necessary. The developed FMDMS showed a large pitch behavior for a small heave motion.

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

Correction Algorithm of Errors by Seagrasses in Coastal Bathymetry Surveying Using Drone and HD Camera (드론과 HD 카메라를 이용한 수심측량시 잘피에 의한 오차제거 알고리즘)

  • Kim, Gyeongyeop;Choi, Gunhwan;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.553-560
    • /
    • 2020
  • This paper presents an algorithm for identifying and eliminating errors by seagrasses in coastal bathymetry surveying using drone and HD camera. Survey errors due to seagrasses were identified, segmentated and eliminated using a L∗a∗b color space model. Bathymetry survey using a drone and HD camera has many advantages over conventional survey methods such as ship-board acoustic sounder or manual level survey which are time consuming and expensive. However, errors caused by sea bed reflectance due to seagrasses habitat hamper the development of new surveying tool. Seagrasses are the flowering plants which start to grow in November and flourish to maximum density until April in Korea. We developed a new algorithm for identifying seagrasses habitat locations and eliminating errors due to seagrasses to get the accurate depth survey data. We tested our algorithm at Wolpo beach. Bathymetry survey data which were obtained using a drone with HD camera and calibrated to eliminate errors due to seagrasses, were compared with depth survey data obtained using ship-board multi-beam acoustic sounder. The abnormal bathymetry data which are defined as the excess of 1.5 times of a standard deviation of random errors, are composed of 8.6% of the test site of area of 200 m by 300 m. By applying the developed algorithm, 92% of abnnormal bathymetry data were successfully eliminated and 33% of RMS errors were reduced.

Validation of Floating LiDAR System for Development of Offshore Wind Farms (해상풍력단지 개발을 위한 부유식 라이다 검증)

  • Lee, Jin-Jae;Kang, Seung-Jin;Lee, Gwang-Se;Kim, Hong-Woo;Kim, Sung-One;Ahn, You-Ock;Kyong, Nam-Ho
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, a floating LiDAR system (FLS) is investigated through a field test involving two steps. First, correlations among wind speeds, measured using the met mast and two LiDARs, are computed to analyze the acceptance criteria of LiDAR for measuring wind speed. The results of the analysis show that the slopes of single variant regression between mean wind speeds are below 1.03 and the coefficient of determination is above 0.97. Next, correlations among wind speeds measured using the FLS and a fixed LiDAR are determined through a field test carried out in Doomi-doo, Tong-young, Gyeongsangnam-do. The FLS is installed 300 m away from the fixed LiDAR on the ground. The results show that the slope of single variant regression is approximately 1.0275 and the coefficient of determination is above 0.971. According to the IEA/wind 18 recommendation, it is found that the developed FLS measures valid wind speeds to assess wind resources for the development of offshore wind farms.