• Title/Summary/Keyword: 부유식 구조체

Search Result 48, Processing Time 0.02 seconds

A Study on the Wave Drift Damping of Moored Floating Structures in Regular Waves (계류된 부유체의 규칙파중 표류감쇠에 대한 연구)

  • Park, In K.;Choi, Hang S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.40-53
    • /
    • 1996
  • In this paper, the wave drift damping is studied. An approximate method is adopted to calculate the wave drift damping for the sake of practical applications. By assuming the ship's forward speed to be low, the Green function and the velocity potential are expanded asymptotically with respect to the Brard number(${\tau}$) and terms up to the first order of ${\tau}$ are retained. Mean wave drift forces are computed straightforwardly. The wave drift damping is estimated as the change rate of the mean wave drift force with respect to the ship's speed. In order to validate the present method, Series 60(Cb=0.7) ship is exemplified for forward speed of Fn=0, 0.02 and 0.04. To predict the wave drift damping experimentally, three geosym models of the Esso-Osaka tanker are used. Also the effect of drift angle on the wave drift damping is also considered. Comparisons between numerical and experimental results show reasonable agreements.

  • PDF

Application of the B-Spline Based High Order Panel Method to the Floating Body Dynamics (B 스플라인 고차 패널법을 적용한 부유체 운동해석)

  • Ahn, Byoung-Kwon;Lew, Jae-Moon;Lee, Hyun-Yup;Lee, Chang-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2008
  • A B-spline based high order panel method was developed for the motion of bodies in an ideal fluid, either of infinite extent or with a free boundarysurface. In this method, both the geometry and the potential are represented by the B-spline, which guarantees more accurate results than most potential based low order methods. In the present work, we applied this B-spline based high order method to the radiation problem of floating bodies. The boundary condition on the free surface was satisfied by adopting a Kelvin-type Green function and irregular frequencies were removed by placing additional control points on the free surface surrounding the body. The numerical results were validated by comparison with existing numerical and experimental results.

Rolling Dynamic Response Analysis of Mobile Harbor Crane by Sea State 3 Wave Excitation (해상상태 3의 파고에 따른 모바일 하버 크레인의 롤링 동응답 해석)

  • Han, Ki-Chul;Hwang, Soon-Wook;Choi, Eun-Ho;Cho, Jin-Rae;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.493-499
    • /
    • 2010
  • In the sea-floating logistics port called mobile harbor a crane system with the different structure from the conventional above-ground container crane is installed. And, the dynamic stability of whole mobile harbor by the wave excitation is definitely affected by the crane positioned at the top. This paper is concerned with the dynamic rolling analysis of the mobile harbor subject to sea state 3 wave excitation, for which two-step analysis procedure composed of theoretical and numerical approaches is employed. First, the rigid rolling of mobile harbor is obtained according to the linear wave theory. And then, the dynamic rolling response of the flexible crane system caused by the rolling excitation of mobile harbor is analyzed by finite element analysis. The coupled interaction effect between the sea wave and the mobile harbor is taken into consideration by the added mass technique.

Concrete Shear Strength of Light Weight Concrete Beams Reinforced with GFRP bar (GFRP bar 경량콘크리트 보의 콘크리트 전단강도)

  • Jin, Min-Ho;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.177-180
    • /
    • 2008
  • Recently, the research of FRP bar as an alternative reinforcing material in reinforced concrete structures has increased to get an innovative solution to the corrosion problem. In addition to the noncorrosive nature of FRP materials, they also have a high strength-to-weight ratio. Therefore, when light weight concrete reinforced with FRP bar is used in marine environment, for instance floating structures, some advantages can be expected. But researches for the light weight concrete structure using FRP bar as a flexural reinforcement are limited to date. In this paper, the concrete shear contribution of the light weight concrete beam reinforced with GFRP bar was studied. Experiment for beams varying concrete compressive strengths and flexural reinforcement ratios was conducted and analysed. The test results showed that 75% of values obtained from proposed equation in preceding research were well agreed with the test results and were better results than the one predicted by the ACI 440.1R-06 code.

  • PDF

Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine (메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.

Floating Sector Caisson for Maintenance of the Large Underwater Structures (대형 수중구조물 보수를 위한 부유식 섹터케이슨)

  • Lee, Joong-Woo;Lee, Seung-Chul;Lee, Jung-Su;Kwak, Seung-Kyu;Kim, Ki-Dam
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.421-426
    • /
    • 2007
  • Recently, the defect maintenance period of the new construction structure was extended from 5 years to 10 years. And according to change of realization on the quality of construction and maintenance, a development of semi-permanent method of construction is required for maintenance of blind parts of underwater structure, such as bridge, dam, harbor, etc. In this study, we proposed a floating type sector dry caisson, which is effective to the maintenance of submerged large structures. These large structures were being maintained incompletely, partly due to unskilled divers and difficult working condition. Considering the easiness of access to the maintenance area and the cost for set up the working structure, especially for the case of structure slabs close to the sea surface and harrow pile span structures, we developed and introduced a sector dry caisson instead of the full caisson structure. By doing this, it is easy to move out the caisson rapidly in emergence case. Therefore, we expect that the floating sector caisson will contribute to reduce working time and improve the quality of underwater work in future days.

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

Development of Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI)의 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kang, Gm-Sil;Youn, Heong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • In June 2010, Geostationary Ocean Color Imager (GOCI), the world's first ocean color observation satellite will be launched. GOCI is planned for use in real-time monitoring of the ocean environment around Korean Peninsula by daily analysis of ocean environment measurements of chlorophyll concentration, dissolved organic matter, and suspended sediments taken eight times per day for seven years. GOCI primary data will support a fishery information service and red tide forecasting, and ocean climate change research. In this paper, the development background of GOCI, user requirements, GOCI architecture, and the GOCI on-orbit operational concept are explained.