• Title/Summary/Keyword: 부유량제어

Search Result 24, Processing Time 0.015 seconds

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Sweet Potato Plot - (강우시 비점오염원의 오염부하 특성 - 고구마 재배지를 대상으로 -)

  • Kang, Mee-A;Jo, Soo-Hyun;Choi, Byoung-Woo;Yoon, Young-Sam;Lee, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.365-371
    • /
    • 2009
  • This paper address the characteristics of loading pollutants caused by the unit agricultural area to establish an efficient management method in NPS (non-point source). The relationship between rainfall and runoff shows good coefficient with 0.92, when the event which shows relatively long antecedent dry days is excepted. The impact of runoff volume on the runoff coefficient can be described by the rainfall intensity strongly. The pollutant EMCs (event mean concentrations) in runoff increased by the increase of antecedent dry days due to dry soil conditions. As the similar pattern of pollutant's loads such as TSS, BOD, COD, TN and TP, it is cleared that other pollutants can be removed when TSS is removed. Therefore the system using only runoff coefficients is not sufficient for the prediction of pollutant loads. It is necessary to consider soil conditions such as rainfall, antecedent dry day, antecedent rainfall etc. for the prediction system.

Characteristics of Stormwater Treatment in Construction Site (건설 현장 내 비점오염원 처리 특성 평가)

  • Choi, Younghoa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun;Jeong, Soelhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • Total suspendid solid (TSS) of non point source pollutants in construction site are in higher concentration than others (BOD, COD etc). Also, the TSS concentration is very sensitive to the rainfall intensity in early stage of construction. There are two methods for treatment of non point source pollutants, which are temporary treatment facility and filtering one. But they have disadvantages. Temporary facility system has very low efficiency and filtering system consumes high energy and takes up large footprint. This study shows how prefabricated flocculation/coagulation system is developped to cover the above weakness and evaluation of the system performance in construction site. The prefabricated flocculation/coagulation system has very high treatment efficiency comparing with temporary and filtering system and takes small footprint. Therefore, it expects that the system leads to prevention of pollution near construction site and reduction of public grievance. Proper coagulant dosage and sludge circulation facility application, controlling the height of sludge interfacial are necessary to maximize the system efficiency.

The Feasibility of Natural Ventilation in Radioactive Waste Repository Using Rock Cavern Disposal Method (동굴처분 방식을 사용하는 방사성 폐기물 처분장의 자연 환기 타당성 평가)

  • Kim Jin;Kwon Sang Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.183-192
    • /
    • 2005
  • Natural ventilation in radioactive waste repositories is considered to be less efficient than mechanically forced ventilation for the repository working environment and hygiene & safety of the public at large, for example, controlling the exposure of airborne radioactive particulate matter. It is, however, considered to play an important role and may be fairly efficient for maintaining environmental conditions of the repository over the duration of its lifetime, for example, moisture content and radon (Rn) gas elimination in repository. This paper describes the feasibility of using natural ventilation which can be generated in the repository itself, depending on the conditions of the natural environment during the periods of repository construction and operation. Evidences from natural cave analogues, actual measurements of natural ventilation pressures in mountain traffic tunnels with vertical shafts, and calculations of airflow rates with given natural ventilation pressures indicate possible benefits from passive ventilation for the prospective Korean radioactive waste repository. Natural ventilation may provide engineers with a cost-efficient method for heat and moisture transfer, and radon (Rn) gas elimination in a radioactive waste repository. The overall thermal performance of the repository may be improved. The dry-out period may be extended, and the seepage flux likely would be decreased.

  • PDF

Biodegradation of VOC Mixtures using a Bioactive Foam Reactor I: Reactor Performance (계면활성제 미생물반응기의(혼합 VOCs) 생분해 I: 반응기 거동평가)

  • Shin, Shoung Kyu;Jang, Hyun Sup;Hwang, Sun Jin;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.689-694
    • /
    • 2006
  • The system performance of a bioactive foam reactor (BFR), that consists of a foam column using a surfactant and a biodegradation basin containing suspended bacteria, was investigated for the treatment of gaseous toluene or a mixture of four volatile organic compounds (VOCs, benzene, toluene, p-xylene, and styrene). Overall, the BFR achieved stable VOC removal efficiencies, indicating that it can be used as a potential alternative over conventional packed-bed biofilters. Furthermore, a dynamic loading test showed that relatively constant removal was maintained at the elevated loading due to a high mass transfer rate in the foam column. However, as the inlet concentration of VOCs increased, a portion of the VOCs mass-transferred to the liquid phase was stripped out from the biodegradation basin, resulting in a decrease in the overall removal efficiency. In the BFR, the removal efficiency of the individual VOC was mainly determined depending on the biodegradation rate (styrene > toluene > benzene > p-xylene), rather than the mass transfer rate. Consequently, increases in the microbial activity and the volume of the basin could improve the overall performance of the BFR system. Further investigation on microbial activity and community dynamics is required for the BFR when subjected to high loadings of VOC mixtures.