• Title/Summary/Keyword: 부엽 신호 차단

Search Result 2, Processing Time 0.014 seconds

A Study on the Design and Implement of The Function of the Sidelobe Blanking of VHF Radar (초단파 레이다의 부엽 차단 기능에 대한 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.637-642
    • /
    • 2020
  • In this study, the SLB(Sidelobe Blanking)/BLB(Blacklobe Blanking) design of the VHF band radar using the low-frequency band having a relatively larger beam width than the S-band or X-band radar. The antenna of the VHF band has a relatively large beam width, so it is reflected from the side lobe. If the reflected target signal is not processed into sidelobe, the false alarm rate of the radar increases by recognizing it from the main lobe signal. This method of SLB blocking is the elimination of the side lobe signal in the front of the array antenna using the central radiating element of the array antenna, and the blocking of side lobe signal from the antenna rear through BLB receiver block. After completed the radar implementation, The function of blocking of side lobe signals was confirmed through the system unit test by Simulated signal generator. Through this study, it will be used in the implementation of the side-lobe blocking technology of the array antenna for low-frequency band radar with large antenna size and beam width in the future.

Adaptive Sidelobe Blanker for Interference Environment (간섭 환경에 강인한 적응형 부엽차단기)

  • Yang, Eunjung;Han, Iltak;Song, Junho;Lee, Heeyoung;Yeom, Dongjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.317-325
    • /
    • 2015
  • In an interference environment, adaptive sidelobe blanking(adaptive SLB: ASB) algorithm effectively cancels the high-duty cycle jammer and blocks the sidelobe signals without the auxiliary antenna. The adaptive SLB for the linearly constrained minimum variance (LCMV) is proposed in this paper. In the proposed scheme, the interference covariance matrix is modified to satisfy the direction constraints of LCMV and the normalized output can be obtained to block sidelobe signals. As the LCMV can be represented as a generalized sidelobe canceller(GSC) form, which is the general framework of various adaptive beamforming(ABF) algorithms, the proposed adaptive SLB can be applied to various ABF methods. The performance of the proposed method is verified through simulation and analysis.