• Title/Summary/Keyword: 부엽토

Search Result 44, Processing Time 0.016 seconds

Incidence and Visual Symptoms of Chilling Injury in Greenhouse Watermelons (저온환경이 수박이 냉해발생과 형태적 증상에 미치는 영향)

  • 권성환;전형권;최동칠;김채철
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • This experiment was carried out to investigate temperature distribution in the double layer plastic greenhouse and chilling injury to watermelons grown during a cold season. Temperatures on eastern and western sides were about 6.2% and 14.7%, respectively, lower than that of central section in a south-north oriented greenhouse. Daily mean temperature in the northern part was about 1-2$^{\circ}C$ higher than that in the southern part of the greenhouse. In terms of vertical temperature distribution inside the greenhouse, temperature at ground surface was approximately 1$^{\circ}C$ lower during the day and 0.5$^{\circ}C$ higher during the night than that in the upper part, 2m from the ground surface. Leaf mould medium kept higher ground temperatures as compared to sandy soil, red clay soil, and in the northern and southern sides as compared to the central part of the greenhouse. A symptom of chilling injury on leaves was upward curling, followed by chlorosis and necrosis. A severe symptom of chilling injury to plants was the breakdown of vascular bundles. Root growth was more susceptible than stem or leaf growth to low temperatures. At 3$0^{\circ}C$, main and lateral roots grew vigorously, while lateral root growth was inhibited at 22$^{\circ}C$ and root growth was stopped at 14$^{\circ}C$ and 6$^{\circ}C$. Small and puffy fruits with dark green surface were produced at low temperatures. In cold season cultivation of watermelons, it is suggested that plants be transplanted in the central part and train to sides of the greenhouse in order to reduced chilling injuries.

  • PDF

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva (장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진)

  • Kim, Joon-Young;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.210-221
    • /
    • 2020
  • This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.

A Case Study on the Factors of Obstacles to Growth of Planted Trees in the Gimcheon Jakjumgogae of Baekdudaegan Ecological Axis Restoration Site (김천 작점고개 백두대간 마루금 복원사업지 내 식재수목의 생육 장애 요인에 관한 연구)

  • Kim, Su-Jin;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.422-432
    • /
    • 2022
  • Soil and micro-climatic environmental monitoring was conducted to evaluate the factors causing tree growth impediments at the Baekdudaegan ecological axis restoration project site. As a result, it was found that the nutrient supply was insufficient in the restoration project site due to the lack of organic matter, total nitrogen and cation exchange capacity of the soil compared to the surrounding forest. After the completion of the restoration, the soil moisture in the autumn decreased more than 7 times faster than that of the surrounding forest, and it was evaluated that the soil moisture was significantly low due to the lack of silt and clay content. In the case of the restoration site, the annual potential evapotranspiration was analyzed to be 975mm, which is approximately two times higher than that of the surrounding forest. The soil moisture of the restoration site in the summer decreased rapidly during the daytime when the amount of insolation increased and this was found to be strongly influenced by the increase in potential evapotranspiration. In order to improve the above factors affecting the tree growth at the Baekdudaegan ecological axis restoration project site, it is necessary to induce the smooth supply of nutrients and water to plants by improving physical proprieties and cation exchange capacity, i.e., using litterfall, humus soil, soil conditioner and organic fertilizer. The results of this study are expected to serve as basic data for the design, construction, and management of ecological axis restoration projects in the future.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.