• Title/Summary/Keyword: 부식 방지

Search Result 412, Processing Time 0.033 seconds

Development and the Long-Term Test of Anti-Adhesion Surface Coating Technology on Electric Power Distribution Equipment (배전기기 외함 부착방지 및 자기세정 코팅기술 개발 및 현장실증)

  • Shim, Myung Jin;Sohn, Song Ho;Seo, Ji Hoon;Han, Sang Chul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.285-288
    • /
    • 2020
  • The demand for coating technology on electric power equipment that has arisen from such issues regarding the attaching of illegal advertisements and posters to electric power distribution boxes such as TR, SW, etc. in down town areas seeks to produce functional coating surfaces using polymers and nano-materials that will result in improvements in self-cleaning performance and greater stability even under harsh environmental conditions. KEPCO-coatings consist of copolymerized acrylic resin and methacryl-modified reactive silicone that are able to chemically combine, which results in performance improvement without any leakage of of silicone, thus contributing to its properties of high-stability. Thus, the research team has also started long-term on-site testing on 9 electric power distribution spots around a city center in cooperation with the KEPCO Daeduck-yusung branch. The KEPCO-coating technology could advance the best coating materials and processes to meet appropriate circumstances for a variety of outdoor damage environment. It is also predicted that KEPCO could be possible to expand international electric maintenance markets and to arrange business platforms if KEPCO would achieve its original technology (IPs) by the means of upgrading in self-cleaning coating technology and obtaining long-term on-site test records from nationwide electric facilities.

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Change of Tensile Strength for Rafter Pipes of Plastic Greenhouse according to Elapsed Period (경과년에 따른 비닐하우스 서까래 파이프 인장 강도 변화)

  • Song, Hosung;Lim, Seong-Yoon;Ryu, Hee-Ryong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.130-130
    • /
    • 2017
  • 비닐하우스의 골조를 구성하는 파이프는 부식을 방지할 목적으로 아연도강관을 사용한다. 그러나 시간이 지남에 따라 아연도금량 감소와 여러 외부 환경인자 등에 의하여 부식이나 침식이 진행되어, 외관상 녹이 생기고 강도와 연신율 등이 감소하게 된다. 이는 비닐하우스 전체의 내구성을 저하시키는 요인으로 작용하게 되는데, 이를 평가하기 위한 방법이나 기준은 미비한 실정이다. 이에 본 연구에서는 농업시설의 내구성을 평가하기 위한 방법의 하나로 각기 다른 경과년수를 갖는 비닐하우스로부터 채취한 서까래 파이프의 인장 시험을 실시하였다. 인장 시험에 사용된 서까래 파이프는 (구)시설원예시험장에 설치되어 있는 비닐하우스에서 경과년별로 채취하였으며, 지중매설부와 지상노출부로 구분하여 시편을 제작하였다. 인장 실험 결과 서까래 파이프의 경과년이 오래될수록 시편의 인장 강도는 작아지는 경향을 보이고 있으나, 파단연신율은 경과년과 연관성을 찾아보기 어려운 것으로 나타났다. 그리고 동일한 경과년을 갖는 서까래 파이프 시편에서 지중매설부의 인장 강도와 파단연신율이 지상노출부에 비해 대체로 작게 측정되었으며, 경과년이 증가할수록 인장 강도의 감소폭이 커지는 경향을 보이는 것으로 나타났다.

  • PDF

Study on Corrosion Problems in PEMFC Cooling System (PEMFC 냉각 시스템의 물부식 방지에 관한 연구)

  • Park, Kwang-Jin;Jeong, Jae-Hwa;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

ED-drilling of WC-Co to Minimize Electrolytic Corrosion on a Workpiece Surface (방전드릴링 시 발생하는 초경합금의 표면전해부식 방지)

  • Song, Ki-Young;Chung, Do-Kwan;Park, Min-Soo;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.47-54
    • /
    • 2009
  • In this study, a simple and effective method was proposed to minimize electrolytic corrosion on the workpiece during ED-drilling using water as a working fluid. The adhesion of a cover plate onto the surface of the workpiece was greatly effective for suppressing electrolytic corrosion during ED-drilling. The experiment revealed that the adhesion of the cover plate prevented corrosion without causing significant changes in machining characteristics. Using the machining method proposed in this paper, electrolytic-corrosion-free holes can be machined without change in the machinery system. By using corrosion-free hole as a start hole for wire EDM, a lead frame die with high quality was fabricated successfully.

Modification of Quantum Dot Sensitized ZnO Nanowires for Stable Photoelectrochemical Hydrogen Generation

  • Seol, Min-Su;Jang, Ji-Uk;Jo, Seung-Ho;Lee, Jae-Seong;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.676-676
    • /
    • 2013
  • 무기물 양자점을 광감응 염료로 사용하는 경우 양자점의 사이즈 조절만으로 밴드갭을 조절할 수 있어 광학적 특성 조절이 용이하며, 유기 염료보다 광흡수 능력이 뛰어난 장점을 가진다. 특히 카드뮴 계열의 CdS, CdSe 양자점을 순차적으로 증착하여 사용하는 경우 가시광 전 영역을 효율적으로 흡수, 이용할 수 있어 광전기화학 셀의 광전극으로 사용 시 높은 성능을 기대할 수 있다. 하지만, 카드뮴 계열 양자점의 경우 광전기화학 셀로의 구동에 있어 안정성이 낮은 문제점이 있으며, 이는 양자점에 남아있는 정공이 관여하는 양자점 부식 반응으로 인한 것이다. 본 연구에서는 보다 안정적이면서도 고효율의 광전기화학적 수소생산 시스템을 위해, CdSe/CdS 양자점 감응형 ZnO 나노선 광전극에 IrO2 촉매물질을 증착하였다. CdSe/CdS 양자점이 가시광 전 영역을 흡수하며, ZnO 나노선 구조를 통해 생성된 광전자를 효율적으로 포집하여 높은 광전류 특성을 기대할 수 있다. 나아가 산소생산용 조촉매로 많이 사용하는 $IrO_2$ 촉매 물질의 추가증착을 통해 양자점에서 생긴 정공을 빼 줌으로서 정공이 관여하는 양자점 부식 반응을 방지할 수 있다. 실험결과 촉매물질의 증착 이후 광전류 생성 특성 및 수소생산량이 증가하였으며, 안정성 또한 상당히 향상된 것을 확인할 수 있었다.

  • PDF

Study on Prevention of Galvanic Corrosion between Carbon Steel Rivets and Graphite Used in Aluminum Matrix Automobiles (알루미늄 기지 자동차에 쓰이는 탄소강 리벳과 그라파이트간의 갈바닉 부식 방지 연구)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.128-140
    • /
    • 2017
  • Aluminum alloy matrix may be used for manufacturing lighter automobiles. However, galvanic corrosion may occur between the rivet joint combining aluminum alloy matrix and a CFRP (carbon fiber reinforced plastic) laminate. The possibility of galvanic corrosion may be investigated by measuring galvanic couple currents. Two types of galvanic current measuring methods were used. One method is to use potentiodynamic polarization curves and the other is the ZRA (zero resistance ammeter) method. For galvanic corrosion experiments graphite, a major component of CFRP, was used with carbon steel (rivets) and 6061 aluminum alloys. Regardless of carbon steel, Ni deposited carbon steel, and 316L stainless steels we also investigated the possibility of reduction in galvanic corrosion. Results revealed that even though Ni deposited carbon steel or 316L stainless rivet may slightly increase galvanic current density between those and Al matrix, substitute rivets for carbon steel may be considerably useful for reducing overall galvanic corrosion.

Inhibition of Pitting Corrosion of Copper Tubes in Wet Sprinkler Systems by Sodium Sulfite (아황산나트륨을 이용한 스프링클러 동배관 공식 부식 방지)

  • Suh, Sang Hee;Suh, Youngjoon;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • Inhibition of pitting corrosion of the copper sprinkler tubes by removing dissolved oxygen in water with sodium sulfite was studied on the wet sprinkler systems operated in 258 household sites. First, air in the sprinkler tubing was removed by vacuum pumping. The tube was then filled with sodium sulfite dissolved in water. Sodium sulfite was very effective in maintaining a very low dissolved oxygen concentration in water in the sprinkler tube for the observation period of six months. Water leakage from the copper sprinkler tube was reduced significantly by using sodium sulfite. Both pitting corrosion process and pitting corrosion inhibition mechanism were investigated by examining microscopical and structural aspects of corrosion pits formed in failed copper sprinkler tube. Pitting corrosion was caused by pressurized air as well as sediments such as sand particles in copper tubes through oxygen concentration cells. It was confirmed microscopically that growth of corrosion pits was stopped by reducing dissolved oxygen concentration to a very level by using sodium sulfite.

Esophageal Stricture Treated with Endless Bougienage (무단소식자법에 의한 심한 식도협착증 치험 1 례)

  • 김중환;오경균;정완교;이상기;김정배;길동석;서정하
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1983.05a
    • /
    • pp.5.3-5
    • /
    • 1983
  • Esophageal stricture due to various caustic agents has led to decrease markedly with the improvement of the way of life and socioenvironmental change, and can be prevented with adequate procedure and management. However, there are still sporadic incidents of esophageal stricture due to inadequate treatment and uncooperation of patients. Esophageal stricture was treated with various kinds of bougies ; peroral esophagoscopic bougie, Hurst or Maloney type weighted bougie, endless bougie, retrograde esophageal bougie and open surgery. Recently the authors had experienced a case of severe esophageal stricture after ingestion of HCl, which was treated by gastrostomy and endless bougienage with good result.

  • PDF

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.