• Title/Summary/Keyword: 부식 방지

Search Result 412, Processing Time 0.032 seconds

The Investigation of Microstructure of Electro-deposited Layer for the Corrosion Resistance on Sheet Steel (강판의 부식방지를 위한 도금층 조직관찰)

  • 김인수;이세광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.224-227
    • /
    • 1997
  • In Ni and Zn plating, microstructure and corrosion behavior of electrodeposits with various electroplating condition were investigated. Optical microstructure, SEM images and polarization curves of electrodeposits are different with plating time and temperature.

  • PDF

초고층 아파트 최적설비 시스템

  • 김종필
    • Journal of the KSME
    • /
    • v.32 no.3
    • /
    • pp.230-240
    • /
    • 1992
  • 이 글에서는 국내 특성에 적합한 초고층아파트 설비시스템의 설계기법 확립 및 설비시스템의 최적모델을 정립함으로써 초고층 아파트 설비시스템의 효율향상은 물론 공사비절감, 품질향상, 공기단축 등의 효과를 통해 양질의 저렴한 주택의 기술개발에 기여하고 건설업의 대외개방에 대비한 국제경쟁력을 고취시키는데 필요한 초고층아파트 수직통로내의 열유동현상, 배관부식 방지기법 및 설비시스템의 구성요소별 설계방안 등에 대해 소개하고자 한다.

  • PDF

Effect of Oxide Film Formation on the Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 산화막 형성이 피로거동에 미치는 영향)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four-pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface roughness. In addition, fractographic analysis was performed and the oxide films formed on the material surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion.

Design of an Active Shaft Grounding System for the Elimination of Alternating Electromagnetic Field in Vessel (선체 교류 전자장 제거를 위한 능동 축 접지 시스템 설계)

  • Kim, Tae-kue;Ahn, Ho-kyun;Yoon, Tae-sung;Park, Seung-kyu;Kwak, Gun-pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1515-1524
    • /
    • 2015
  • Recently, for the purpose of preventing the corrosion of a vessel, the electrical corrosion protection device that prevents the corrosions of the hull and the propeller is widely used. However, the electrical corrosion protection method artificially emits the current into the seawater around the hull using the power supply in order to make the hull and propeller be in the state of not being corrosion, so that electromagnetic field is generated outside the hull by the current emitted into the seawater. In this paper, the static and alternating constituents of the electromagnetic field generated in underwater outside the hull are analyzed and a countermeasure is investigated to reduce the strength of the electromagnetic field. In conventional shaft grounding system, the shaft potential is maintained above at least 100mV and the alternating current component constitutes more than 10% of the total current. However, in this paper, a control system was designed in order that the alternating current component and the shaft potential which generate electromagnetic field are maintained within 1% and 2mV respectively, and the performance was verified by simulation.

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.

Polishing Behavior and Characterization of Cu Surface in Citric Acid based Slurry with Corrosion Inhibitor (BTA) (부식방지제(BTA)가 첨가된 Cu CMP 슬러리에서의 연마거동과)

  • Kim, In-Kwon;Kang, Young-Jae;Hong, Yi-Kwan;Kim, Tae-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.42-43
    • /
    • 2005
  • 본 연구에서는 Cu 슬러리에 부식방지제인 BTA를 첨가하여 슬러리내의 과수의 농도, pH 의 변화, 연마입자의 종류에 따라 연마거동에 미치는 영향과 각 chemical 변화에 따른 Cu surface의 변화를 살펴보았다. BTA (Benzotriazole, $C_6H_4C_3H$)를 첨가함으로써 본 연구에서 시행된 pH 와 과수의 변화에 상관없이 Cu-BTA film을 형성하여 Cu의 dissolution을 최대한 억제하는 것을 확인할 수 있었다. 또 그로인해 BTA를 첨가하지 않았을 때보다 얇은 passivation layer를 형성함을 알 수 있었고 contact angle도 더 높았다. 연마율의 경우에도 BTA가 첨가됨으로써 감소됨을 확인할 수 있었고 연마입자로 alumina particle을 사용한 경우에는 pH6, 과수 10vol%이상에서는 오히려 연마율이 증가하였다. fumed silica의 경우에는 hardness가 작아 mechanical적인 제거력이 낮아 BTA가 첨가되어도 연마율에는 큰 영향이 없었다.

  • PDF

A Study on the Development of Anti-Fouling System Using a High Frequency?High Voltage Pulse Power (태양광을 활용한 선체방오시스템 개발)

  • Kim, Shin-Hyo;Kim, Hee-Je;Kim, Hyun-Min
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.34
    • /
    • pp.18-32
    • /
    • 2013
  • 최근 선저 부착 생물에 관한 문제가 환경오염으로 확대되고 그에 따른 여러 가지의 선체 방오 방법 중 특히 주석(Sn)의 화합물질의 화학반응으로 따개비 등의 오염 요소를 방지하는 기존 방법이 수은, 구리 등의 유독성 화합물에 의해 임포섹스 유발과 그에 따른 2차 오염 확산의 요인이 되어 2012년 7월부터는 유기주석화합물(TBT) 도료를 사용한 신규 선박은 규제되는 등 그 심각성이 대두하고 있다. TBT는 매우 미량의 농도에서도 다양한 생물학적 저해영향을 일으키는 것이 알려져 이를 대체하기 위한 여러 화학물질이 개발됐다. 본 논문에서는 이러한 추세에 따라서, 유독성 화합물의 독성을 벗어나 저 전류의 고주파 고전압 펄스 에너지를 이용한 새로운 환경조성을 통해서 부착성 패류의 선저 부착에 대한 특성을 연구하였으며, 특히 환경오염 및 해양오염에 영향이 적은 방오시스템을 개발하고자 하였다. 또한 본 연구에서 적용된 고전압 펄스 시스템을 이용하여 선체의 부식정도를 저감 가능한 시스템을 구현을 위한 기초 실험과 현재 이슈화 되고 있는 선박평형수의 살균장치에 적용하는 파생연구들을 통하여 해양오염방지 요소들을 겨냥하여 후속연구를 위한 토대를 마련하고자 하였다.

  • PDF

Corrosion control technique for pipeline system through injecting water stabilizer (수질안정화 약품 주입에 따른 상수도관 내부 부식제어 특성 연구)

  • Hwang, Byung-Gi;Woo, Dal-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.545-551
    • /
    • 2011
  • Recently, demands for generating high quality tap waters are increasing with high concern of water pollution and corrosion of water pipelines. For the reasons, developing water quality stabilization technique in water purification system is sought rather than replacing to a new pipelines. In this study, high-purity liquid lime($Ca(OH)_2$) was introduced for a water quality stabilization technique in water purification process and simulated water distribution system of pilot-scale size was applied to evaluate anti-corrosion control effect. The effect of anti-corrosion control was calculated in terms of LSI(Langelier Saturation Index) In conclusion, the result of pilot plant showed improvement of corrosiveness by liquid lime($Ca(OH)_2$) with reduction of released iron(Fe). Application of anti-corrosion control technique to the mild steel coupon and the copper coupon were effective by indicating 35.4, 44.5% of improvements. Besides, sample pipes which were treated with liquid lime had formated more thicker layer of corrosion product inside of pipes. As a result, the process of injecting water stabilizer can greatly contribute to the high quality of tap water.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.