• Title/Summary/Keyword: 부식현상

Search Result 372, Processing Time 0.028 seconds

PL 사례에 대응한 제품안전성 제고방안

  • 임현교
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.375-375
    • /
    • 2001
  • 금년 7월 1일부터 개정 시행되는 품질경영촉진 및 공산품안전관리범파, 2002 년 7 월 1 일부터 시행되는 제조물책임(Product Liability; PL)법으로 인하여 제품의 안전성을 제고하기 위한 노력이 정부와 기업. 학계에서 다각도로 진행중이다. 그러나, 그 추진방향들이 아직 제각각이어서 하나의 조직적인 체계를 갖추진 못하고 있다. 그 이유는 제조물책임에 대응하기 위한 제품안전성 향상이 어느 한 분야의 활동으로는 충족시킬 수 없기 때문이지만, 기본적으로는 제품안전이 담당하여야 하는 책임의 범위가 어디까지인지 기업을 비롯한 관계자들이 명확히 이해하고 있지 못하기 때문이다. 본 연구에서는 이와 관련하여, 기존에 이미 시행착오를 겪은 선진국들의 소송사례를 중심으로 제품결함 중 어느 부분에 문제가 제기되는가를 살펴보고, 그 대응책을 제시하고자 하였다. 먼저 제조물책임법의 제정 취지와 법에서 정하고 있는 책임범위가 어디까지인지를 살펴보고, 선진국의 소송사례를 중심으로 그 적용범위를 확인하였다 또한 제조물책임에 대응하기 위한 방법이 어떻게 진행되는지를 살펴보고, 그 중 제품 안전성 (Product Safety) 을 향상시키기 위하여 신뢰성이나 품질측면에서 경영상의 어떤 노력이 경주되어야 하는가를 검토하였다. 한편, 리스크 관리상의 리스크 분석과 위험성 분석과의 관계, 위험성 분석의 기법들, 위험성 분석기법의 선정요령, 제품의 안전성을 평가하기 위하여 기존의 위험성 분석기법을 어떻게 활용할 것인가, 적용상의 문제점은 없는가 검토하였다. 마지막으로, 현재 기업들이 가장 소홀하게 대응하고 있는 표시상의 결함에 대하여 소송 및 보상사례를 살펴보고, 그에 대한 대책으로서 픽토그램, 라벨, 경고문구, 그리고 사용설명서의 작성 및 표시 방안에 대하여 대응방안을 고찰하였다. 용융이 발생될 수 있다. 따라서, 이러한 현상을 방지하기 위해서는 진공 분위기 하에서 적절한 접합 틈새를 유지할 수 있는 공정 및 장비의 개발이 필요하다.(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14) 식도경 시행회수는 1회가 17례(54.8%), 2회가 9례(29.0%), 3회 이상이

  • PDF

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

Experimental Study of Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향의 실험연구)

  • Ku, Hee-Kwan;Jung, Bum-Young;Hong, Kwang;Jung, Eun-Sun;Jeong, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3748-3754
    • /
    • 2009
  • An integral head loss test in a test apparatus was conducted to simulate chemical effects on a head loss across a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). The test was conducted during 30 days in the condition of a short spray, a long spray, and no materials with chemical effects. The result exhibited that the head loss was affected on amounts of the exposed materials according to spray conditions. XRD analysis of the collected precipitates showed that the precipitates were phosphate compounds. Comparison of the head loss with dissolved species concentration showed that high increase rate of the head loss resulted from the corrosion of aluminum and zinc but slow increase rate of the head loss resulted from the precipitates induced by Si, Mg, and Ca from leaching reaction at NUKON and concrete after passivation of metal specimens.

A study on the Properties of Composite Systems Using Polymer-Modified Mortar and Epoxy Resins for Waterproofing and Anti-Corrosion of Concrete Structures (시멘트 혼입 폴리머와 에폭시수지를 복합한 수처리 콘크리트구조물용 방수방식재료의 성능평가에 관한 연구)

  • Bae Kee-Sun;Jang Sung-Joo;Oh Sang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.3-10
    • /
    • 2005
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. For the waterproofing and anti-corrosion of concrete structures, there can be required various properties such as absorption capacity and water permeability, adhesion and tensile strength, hair crack-resistance, impact-resistance, repeated low and high temperature test and chemical resistance, soundness for drinking water, soundness for drinking water and etc. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49 mm will be perform.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Disinfection Efficiency of Silver Disinfectants for Biofilm (은 화합물을 이용한 생물막 제어)

  • Kim, Jae-Eun;Kim, Jee-Yeon;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.81-87
    • /
    • 2006
  • The industrial systems contain many sites and components susceptible to biofilms formation. Biofilms play an important role in microbial growth and industrial fouling. Thus, the control of the biofilms in industrial systems has been emphasized, however, the efficient controlling method was not provided yet. Since silver compounds have no residual and corrosion problem, the interest for silver compounds as a biofilm control disinfectant has been increased. In this study, we attempted to examine the disinfection ability of silver compounds. The disinfection efficiency of two silver compounds(silver ion and silver oxide) were evaluated for biofilms in comparison with suspended cells using well known indicator microorganisms(E. coli, P. aeruginosa) and compared with that of chlorine. Silver compounds were found to be effective in inactivating E. coli and P. aeruginosa biofilms. The reason for superiority of silver compounds as biofilm disinfectant was suggested by that silver can penetrate into the inner biofilm matrix faster than chlorine without consumption. This study reports that the disinfectant which is highly effective in inactivating the suspended cells in water becomes the less effective for controlling biofilm because of its high reactivity. This results imply that the effective strategy for biofilm control can be achieved by considering thoroughly the chemical nature of disinfects and biofilm structure and the reactivity between them.

Comparison of the Sonodegradation of Naphthalene and Phenol by the Change of Frequencies and Addition of Oxidants or Catalysts (주파수 변화 및 보조제 첨가에 따른 나프탈렌 및 페놀의 초음파 분해효율 비교)

  • Park, Jong-Sung;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.706-713
    • /
    • 2010
  • The research seeks to find the optimal conditions for sonodegradation of naphthalene and phenol as exemplary organic pollutants to be subjected to ultrasound in varying frequencies (28 kHz, 580 kHz, and 1,000 kHz) and in the presence of different kinds of additive (T$TiO_2$, $H_2O_2$, $FeSO_4$, Zeolite, and Cu). In cases of both naphthalene and phenol, 580 kHz of ultrasound has proven to be the most effective among others at sonodegradation. Based on the observation that OH radicals are also produced in maximum under exposure of 580 kHz of ultrasound, we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. $FeSO_4's$ degradation rate and k1 value have increased by approximately 1.8 times compared with the results of the solutions without any additives. This seems to be the result of ultrasound reaction which, accompanied by Fenton's reaction, increased the oxidative degradation and the production of OH radicals. However, application of ultrasound and Fenton's reaction is limited to the batch type conditions, as its use in continuous system can cause loss of iron or decay of the cistern, thereby creating additional pollutants. When the additive is replaced with $TiO_2$, on the contrary, the rate of sonodegradation has increased up to 20% compared to when there was no additive. We therefore conclude that $TiO_2$ could prove to be an effective additive for ultrasound degradation in continuous treatment system.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

Experimental Study on Chloride Penetration into Concrete under Combined Exposure Conditions of Chlorides and High Concentrated Sulfates (고농도 황산염 이온이 함께 존재하는 경우의 염소이온 침투특성에 관한 실험 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Jiang, Yi-Rong;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • Recently, the durability of concrete structures has received great attention as the number of sea-side structures, such as new airport, bridges, and nuclear power plants, increases continuously. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the effects of combined deterioration due to chlorides and sulfates in concrete structures. To this end, comprehensive experimental program has been set up to observe the chloride penetration behavior for various test series. The test results indicate that the chloride penetration is more pronounced for the case of combined attack than the case of single chloride attack. The surface chloride content is found to increase with time and the diffusion coefficient for chloride is found to decrease with time. The prediction equations for surface chloride content and diffusion coefficient were proposed according to test results. The equations for chloride penetration considering the time-dependent diffusion coefficients and surface chlorides were also suggested. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of chlorides and high concentration sulfates but the future studies for combined environment will assure the precise assessment.