• Title/Summary/Keyword: 부식안전성평가

Search Result 117, Processing Time 0.027 seconds

Influence of Load on Welding Stress Distribution of Structural Steel (구조용 강재의 용접응력 분포에 미치는 작용력의 영향)

  • Lee, Sang Hyong;Chang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.555-564
    • /
    • 2004
  • Steel materials, which are normally used in bridge structures, are prone to corrosion and have thin plate structures. Steel bridges that have been damaged through increased vehicle load and corrosion are frequently expected to be strengthened. Repair or strengthening methods generally include cutting, bolting, and welding. The basic characteristics of stress and deformation behavior generated by cutting and welding in the course of the repair work, however, are not yet understood. It is difficult to say whether the safety of the structure after welding conforms with existing safety evaluation methods.Therefore, to gain confidence in the material and to guarantee the safety of the structure after welding, the stress generated by heat, through welding and cutting, was generalized. The effect of additional loads with respect to stress generated by heat was also investigated.

A Study on Development of Displacement Measurement System for Structure using a Laser and 2-D Arrayed Photo Sensors (레이저와 2차원 배열의 광전검출기를 이용한 구조물의 변위측정 시스템의 개발에 관한 연구)

  • Kang, Moon-Phil;Lee, Jin-Yi;Kim, Min-Soo;Kim, Dae-Jung;Choe, Won-Ha;Kang, Ki-Hun;Kim, Jong-Soo;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2002
  • A Safety Monitoring System using a laser and 2-D arrayed photo sensors is developed. To monitor of the deformation and small rotation of structure the developed optical system using 2-D photo sensor array was used to detect the variation of optical orbit of laser which was induced by deformation of the structure. Also, an operating program to manage the system and an algorithm for the data acquisition and the database are introduced. In this study, we demonstrated the capabilities of this system by laboratory experiments before applying the system to the field.

Microbiological Hazard Analysis for HACCP System Application to Hospitals Foodservice Operations (병원급식소의 HACCP 제도 적용을 위한 미생물학적 위해도 분석)

  • Lee, Byung-Doo;Kim, Jang-Ho;Kim, Jeong-Mok;Kim, Du-Woon;Rhee, Chong-Ouk;Eun, Jong-Bang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.383-387
    • /
    • 2006
  • Microbiological hazard analysis of foodservice facilities and utensils of 6 hospitals in the Honam region was evaluated. In the microaerosol evaluation, the microbial counts of dinning table, kitchen, and freezer were comparatively high, and it indicated the microbial contamination of these facilities should be effectively managed. In the microbiological hazard analysis evaluation of cooking utensils and appliances, the total plate counts of cutting boards, knife, and meal plates were comparatively high but did not reveal significance. The counts of coliforms, Staphylococcus aureus and Escherichia coli, were lower than the general limit of microbial contamination, and the microbiological safety of the cooking utensils and appliances were satisfactory. In the microbial safety evaluation of side dishes, microbial counts of heat-cooked foods were generally low and microbiological hazards of these side dishes were comparatively low.

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Structural Integrity and Safety Margin Evaluation for Thinned Pipe Component (감육배관의 구조건전성 및 안전여유도 평가 기술)

  • Lee, Sung-Ho;Kim, Tae-Ryong;Kim, Bum-Nyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.264-267
    • /
    • 2004
  • Wall thinning of carbon steel pipe components due to Flow-Accelerated Corrosion (FAC) is one of the most serious threats to the integrity of steam cycle piping systems in Nuclear Power Plants (NPP). Since the mid-1990s, secondary side piping systems in Korean NPPs have experienced wall thinning, leakages and ruptures caused by FAC. Korea Electric power Research Institute (KEPRI) and Korea Hydro & Nuclear Power Co., LTD. (KHNP) have conducted a study to develop the methodology for systematic pipe management and established the Korean Thinned Pipe Management Program (TPMP). To effectively maintain the integrity of piping system, FAC engineer should understand the criterions of the structural integrity evaluation and the safety margin assessment for the thinned pipe component. This paper describes the technical items of TPMP, and shows the example of the integrity evaluation and safety margin assessment for three thinned pipe component of a NPP.

  • PDF

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

Characteristics of Structural Behavior and Safety Estimation of Water Supply GFRP Pipe (상수도용 유리섬유복합관의 구조적 거동특성 및 안전성 평가)

  • Lee, Bo-Be;Lee, Seung-Sik;Joo, Hyung-Jong;Yoon, Soon-Jng
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we present the results of experimental and analytical investigations on the structural behavior of GFRP pipes used in the water supply pipeline system. Cross-section of the pipe is consisted with two GFRP tubes and polymer mortar between the tubes. Due to the advantages such as light-weight, corrosion resistance, smooth surface, flexibility, etc., use of GFRP pipe in the water supply pipeline system is ever increasing trend. Therefore, more optimized structural design methodology should be developed. In the investigation, we conducted theoretical and analytical studies on the load versus radial deformation characteristics of GFRP pipes. In addition, ring stiffness test is also performed. Test results are compared with theoretical and analytical results and it was found that the results are agreed well within 5% of radial deformation. Finally, it was also found that the GFRP pipes used in the water supply pipeline system are strong enough to satisfy the industrial requirements.

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Durability Analysis of Underground Structure based on Limit State Function Considering Carbonation (탄산화 기반의 한계상태함수를 활용한 지하구조물의 내구성 평가)

  • Choo, Jin-Ho;Lee, Tae-Jong;Yoon, Tae-Gook;Lee, Sang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.69-75
    • /
    • 2014
  • The priority of repair areas are chosen with the probability distribution of 0.3mm wide crack and carbonation induced corrosion. Data is analyzed and evaluated based on the 28 section of Precise Inspection for Safety and Diagnosis (PISD) in seoul. As the crack is distributed in log-normal, the carbonation and cover are in normal distribution. To have rational in repair sections among 503 sheets of underground structure, it is adopted the reliability index as well as the environment factors: strength, sonic speed, $CO_2$ concentration, corrosion, and content of chloride.