• Title/Summary/Keyword: 부순 적벽돌

Search Result 2, Processing Time 0.017 seconds

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

A Study on the Properties and Mix Design of Eco-friendly Concrete Bricks Using Recycled Fine Aggregates (순환잔골재를 활용한 친환경 콘크리트 벽돌의 물성 및 배합설계 연구)

  • Choi, Hyungkook;Yang, Sungchul;Son, Jaeho;Lee, Seunghyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.32-40
    • /
    • 2024
  • In the construction industry, lack of reliability in the quality of recycled aggregates, harmful substance problems, and negative consumer perceptions limit the expansion of the use of recycled aggregates. In this respect, existing studies mainly focus on the use of recycled coarse aggregates in concrete in consideration of durability. On the other hand, in the case of recycled fine aggregates, not only are there insufficient cases applied to major structures, but the scope of application is very limited due to lack of awareness. Therefore, the main purpose of this study is to present the possibility of their application in bearing and non-bearing wall structures through physical characteristics experiments of concrete bricks for masonry according to various mixing ratios of recycled fine aggregates and cement amounts. To this end, the compressive strength and absorption rate of concrete bricks were measured focusing on the mixing ratio of the recycled fine aggregate and the crushed fine aggregate and the amount of cement. As a result, it is found that it is possible to use 100% of recycled fine aggregate for 200kg/m3 of cement or 25% of crushed fine aggregate mixed with 75% of recycled fine aggregate for the same amount of cement to achieve the compressive strength of 13MPa, witch is one of the quality requirements for concrete bricks for bearing walls. In addition, it is found that to meet the strength of 8MPa, one of the quality requirements for non-bearing walls, it is sufficient to use 100% of the recycled fine aggregate for 100kg/m3 of cement. Through the absorption rate tests, it is also confirmed that the absorption rate of the concrete brick is 13% or less by meeting the required performance criteria. This means that even if recycled fine aggregate is used in the manufacture of concrete bricks, the quality standards required by KS F 4004 (concrete bricks) can be sufficiently met.