• Title/Summary/Keyword: 부속실

Search Result 47, Processing Time 0.019 seconds

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.

Numerical Simulation on Smoke Movement in Multi-Compartment Enclosure Fires under Pressurized Air Supply Conditions (급기가압 조건에서 복합 구획 공간 화재의 연기 거동에 대한 수치해석 연구)

  • Ko, Gwon Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the flow characteristics of fire smoke under pressurized air ventilation conditions by carrying out fire simulations on multi-compartment enclosure, including room, ancillary room and stair case. Fire simulations were conducted for the air-leakage test facility, which was constructed to measure the effective leakage area and aimed to improve the understandings of fire and smoke movement by analyzing the overall behaviors of fire smoke flow and pressure distributions of each compartment. The simulation results showed that the heat release rate of the fires was controlled sensitively by the amount of air supplied by the ventilation system. An analysis of the velocity distributions between the room and ancillary room showed that fire smoke could be leaked to the ancillary room through the upper layer of the door, even under pressurized air supply conditions. From these results, it was confirmed that the fire size and spatial characteristics should be considered for the design and application of a smoke control system by a pressurized air supply.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

A Study on the Characteristics of 17th Presidential Record (17대 대통령기록의 성격에 관한 연구)

  • Yang, Inho
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.43-77
    • /
    • 2023
  • This study investigated and analyzed the 17th presidential record by further expanding the awareness of the problem, focusing on media suspicions related to the 17th presidential record. And Based on the results, the purpose is to suggest ways to improve the presidential records management system. To this end, the 17th presidential record transferred to the Presidential Archives was first outlined from an overall perspective, and the records produced in the "record management", "ancillary room", and "Public Safety" functions were quantitatively analyzed. Next, we analyzed the physical records qualitatively along with quantitative analysis of the cases of 'production status notification', 'record production and nonregistration of records via e-mail', and 'core records and electronic/non-electronic records' to determine the records of the 17th President. Personality was diagnosed. Finally, based on the analysis results, a plan to improve the presidential record management system was proposed.

Pressure differential and door opening force in the pressurization systems (급기가압시스템에서의 차압과 문의 개폐력)

  • Kim, Jin-Soo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.372-378
    • /
    • 2009
  • 고충건물 피난경로의 제연시스템은 일반적으로 급기가압방식이 널리 쓰인다. 그러나 국내에서 널리 쓰이는 부속실 단독 가압방식은 공간용적이 너무 작아 차압을 형성하고 유지하는 문제와 방연풍속을 형성하는 문제 사이에 늘 불균형이 존재한다. 또한 거실 출입문을 여닫는 데 지장이 없는 차압 하에서도 계단실 출입문은 차압에 밀려 제대로 닫히지 않는 경우가 있을 수 있다. 이런 측면을 역학적으로 검토하고, 과압 해소방식을 제안한다.

  • PDF

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.

The Experimental Study on the Leakage of Automatic Pressure Differential·Overpressure Control Dampers by Increasing the Number of Damper Operation (자동차압·과압조절형댐퍼의 개폐동작횟수 증가에 따른 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of above 40 Pa, but pressure differential is excessively overpressure in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by increasing the number of dampers operation for identifying this problems. The result of testing, the leakage has difference between new dampers and increased the number of operation dampers. As the static preassure increase, the leakage difference increase. Comparison with preceding study, this result has similar linear tendency.

The Experimental Study on the Leakage of Automatic Pressure Differential · Overpressure Control Dampers (자동차압 · 과압조절형댐퍼의 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of 40 Pa~60 Pa, but pressure differential is over 60 Pa in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by testing for identifying this problems. The result of testing, leakage is $0.090m^3/s{\sim}0.154m^3/s$. It is necessary to limit the leakage of dampers for safe of escapers.