• 제목/요약/키워드: 부상제어기

검색결과 135건 처리시간 0.022초

부상력을 이용한 LMTT(Linear Motor-based Transfer Technology) 의 마찰력 감소에 대한 최적 제어기 설계 (A Design of Optimal Controller with Friction Reduction of Linear Motor-based Transfer Technology via Lift-force Control)

  • 서정현;이진우;한승훈;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1856-1857
    • /
    • 2006
  • The existing automation transfer systems such as AGV(Automated Guided Vehicle) have many problems (maintenance, accuracy, velocity, etc.) and wastes of a vast space and time. Hence we have suggested to LMTT(Linear Motor-based Transfer Technology). This paper deals with fundamental LMTT, and proposes a concept of mass reduction and propulsion control for LMTT when it is starting and reaching an object by using lift-force. By applying optimal controller and the repulsive lift forte in the LMTT, a large percent of vehicle weight is compensated and it reduces friction, then it needs less thrust force to propel the vehicle.

  • PDF

개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계 (Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.

클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링 (Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm)

  • 김민수;변윤섭;이관섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 특별세미나 특별세션
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계 (Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

상전도 부상 시스템의 내고장성 제어기 설계 (Design of Fault Tolerant controller for Electromagnetic Suspension System)

  • 장석명;성소영;성호경;조흥제
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권12호
    • /
    • pp.778-788
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a fault-tolerant control scheme with a dynamic compensator for the failure of the choppers, gap sensors and acceleration sensors in electromagnetic suspension system. The advantage of the proposed control method are demonstrated through simulation and experimental results for the levitation characteristics when the failures of the chopper and sensors occur, respectively.

  • PDF

자기부상 시스템에서의 내 고장성 제어기 설계 (Design of Fault tolerant controller for electromagentic suspenstion system)

  • 장석명;성소영;김인근;성호경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.70-72
    • /
    • 1999
  • Actuator (chopper) and sensors failures resulting from electric shock and mechanical vibration generating by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes the reliable output feedback controller for the electromagnetic levitation systems against actuator, air-gap sensor and acceleration sensor failures. The designed controller is an extend version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the experimental results for the proposed controller against chopper, air-gap sensor and acceleration sensor failures of electromagnetic levitation system.

  • PDF

가스터어빈 연소기의 화염 안정화와 제어 (Flame Stabilization and Control in Gas Turbine Combustor)

  • 최경민
    • 한국분무공학회지
    • /
    • 제8권4호
    • /
    • pp.24-30
    • /
    • 2003
  • This paper presents the characteristics of lifted height and flame length from non-premixed jet flames in highly preheated air to investigate the detail combustion mechanism in the gas turbine or HCCI engine, etc. Special attention was paid to the effect of preheated air temperature, oxygen concentration and fuel injection flow rate on flame length and lifted hight. By using highly preheated air, stable flames were formed even in low oxygen concentration condition. The lifted height increased with decreasing preheated air temperature, where the flame length showed opposed phenomena. The flamelet model, which is thought to have very thin flamelet, is difficult to applicable to the present flame conditions which is formed In low oxygen concentration in highly preheated air.

  • PDF

자기부상열차 제어를 위한 통신기반 무인 신호시스템 구축 (The Construction of Driverless Signaling System based on Communication for the Maglev Control)

  • 강덕원;이종성;김경식;민영기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.519-534
    • /
    • 2008
  • The Maglev travels at levitated status from the rail in some gab (about $8\sim10mm$). it make difference with the existing subway or the another LRV. The detection method of the train speed and the train position to be used at Maglev's signaling system differ with the existing subway or the another LRV's. so, the signal system construction of the new method is necessary. This paper describes the configuration and characteristic of the total signaling system (TTC/Wayside/Cab/Guide way system etc.) developed for Maglev, and the design concept of the signaling system based on the latest wireless LAN communication for driverless operation.

  • PDF

자기부상시스템에서의 내고장성 제어기 설계 (Design of Fault Tolerant Controller for Electromagnetic Supension System)

  • 성호경;조흥제;장석명;성소영
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

상전도 방식의 자기부상 제어기 설계(II) (State Feedback Controller Design For Electro-magnetic Suspension System)

  • 장석명;성소영;정상섭;조흥제;성호경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.101-104
    • /
    • 1999
  • This paper presents the design of state feedback controller with state observer(dynamic filter) for Electro-Magnetic Suspension System. Also, the gain scheduling technique using state observer is analyzed in the time domain and frequency domain.

  • PDF