• Title/Summary/Keyword: 부상속도

Search Result 227, Processing Time 0.02 seconds

Interrelationship between Amylose Content and Physical Properties of Milled Rice (쌀의 아밀로스 함량과 물리적 특성간의 상호관계)

  • Kim, Sung-Kon;Chae, Je-Cheon;Lim, Moo-Sang;Ree, Jung-Haeng
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.320-325
    • /
    • 1985
  • Relation between amylose and physical properties of milled rice was investigated. Amylose content was negatively and positively correlated with chalkiness and alkali solubility, respectively. No correlation was observed between amylose content and water uptake rate, cooked rice hardness or relative crystallinity. Relative crystallinity of the starch was negatively correlated with alkali solubility and water uptake rate.

  • PDF

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway (자기부상열차/가이드웨이 동적상호작용 해석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1559-1565
    • /
    • 2013
  • This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.

A Study of Flow Characteristics by Acoustic Excitation on the Laminar Non-premixed Jet Flame (층류 비예혼합 분류화염에서 음향가진에 의한 유동특성 연구)

  • Oh, Kwang-Chul;Lee, Kee-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • An experimental study has been conducted to investigate the effects of forcing amplitude on the tone-excited non-premixed jet flame of the resonance frequency. Visualization techniques are employed using the laser optic systems, which are RMS tomography, PLIF and PIV system. There are three lift-off histories according to the fuel flow rates and forcing amplitudes; the regime I always has the flame base feature like turbulent flame when the flame lift-off, while the flame easily lift-off in the regime II even if a slight forcing amplitude applied. The other is a transient regime and occurs between the regime I and regime II, which has the flame base like the bunsen flame of partial premixed flame. In the regime I and II, the characteristics of the mixing and velocity profile according to the forcing phase were investigated by the acetone PLIF, PIV system. Particular understanding is focused on the distinction of lift-off history in the regime I and II.

A Design of Integral Sliding Mode Suspension Controller to Reject the Disturbance Force Acting on the Suspension System in the Magnetically Levitated Train System (자기부상 열차 시스템에서 추진 장치에서 발생하는 부상 간섭력의 영향을 제거하기 위한 적분형 Sliding Mode 부상 제어기 설계)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1152-1160
    • /
    • 2007
  • In this paper we deal with a design of integral sliding mode controller to reject the disturbance force acting on the suspension system in the magnetically levitated system which is propelled by the linear induction motor. The control scheme comprises an integral controller which is designed for achieving zero steady-state error under step disturbances, and a sliding mode controller which is designed for enhancing robustness under plant uncertainties. A proper continuous design signal is introduced to overcome the chattering problem. The disturbance force produced by the linear motor is formularized by using a curve fitting of the experimental raw data. Computer simulations show the effectiveness of the designed integral sliding mode controller to reject the disturbance force.

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

Effect of Guideway Characteristics on Runnability of Actively Controlled Maglev Vehicle (선로특성이 능동제어 자기부상열차의 주행성에 미치는 영향)

  • Lee, Jun-Seok;Kim, Moon-Young;Kwon, Soon-Duck;Yeo, In-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.295-303
    • /
    • 2009
  • The purpose of present study is to examine the effect of guideway characteristics on runnability of low and medium speed maglev vehicle. Dynamic governing equation for 2-dof vehicle and optimal feedback control scheme are developed. And then the effect of vehicle speed, rail roughness, guideway deflection, continuity of spans, each span length on dynamic response of the UTM-01 maglev vehicle are investigated. From the numerical simulation, it is found that the gap between bogie and guideway does not increase greatly within design velocity of the vehicle. The response of vehicle are mostly affected by the guideway deflection rather than rail roughness. As a result of the present study, the runnability of maglev vehicle can be improved by reducing the maximum deflection of guideway and adopting the continuous girder systems.

Transfer System using Radial Electrodynamic Wheel over Conductive Track (래디얼 동전기 휠을 이용한 전도성 트랙 위에서의 이송 시스템)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.794-801
    • /
    • 2017
  • When a radial wheel is placed so as to partially overlap a conductive plate and rotated, a lift force is generated on the wheel, a thrust force along the edge, and a lateral force which tends to reduce the overlap region. When several of these wheels are combined, it is possible to realize a system in which the stability of the remaining axes is ensured, except in the traveling direction. To validate the overall characteristics of the multi-wheel system, we propose a transfer system levitated magnetically using radial electrodynamic wheels. The proposed system is floated and propelled by four wheels and arranged in a structure that allows the thrusts generated by the front and rear wheels to offset each other. The dynamic stability of the wheel and the effect of the pole number on the three-axial forces are analyzed by the finite element method. At this time, the thrust and levitation force are strongly coupled, and the only factor affecting them is the wheel rotation speed. Therefore, in order to control these two forces independently, we make use of the fact that the ratio of the thrust to the levitation force is proportional to the velocity and is independent of the size of the gap. The in-plane and out-of-plane motion control of the system is achieved by this control method and compared with the simulation results. The experimental results show that the coupled degrees of freedom can be effectively controlled by the wheel speed alone.

Numerical Study of Effect of DAF-Tank Shape on Flow Pattern in Separation Zone of Dissolved Air Flotation (용존공기부상조(DAF-tank)의 형상변화가 분리조(Separation Zone)의 내부 유동 패턴에 미치는 영향에 대한 수치해석적 연구)

  • Ryu, Gwang-Nyeon;Park, Sang-Min;Lee, Ho-Il;Chung, Mong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.855-860
    • /
    • 2011
  • We numerically simulated a dissolved air flotation (DAF) tank to predict the performance of the pilot facility. The flow was assumed to be two-dimensional and two-phase. The velocity distributions in the separation zones of differently shaped DAFs were compared to find the effect of the shape on the performance. The results showed that the typical flow pattern that appeared in a well-designed DAF-tank was generated in the separation zone of the base model. This flow pattern could be maintained while the baffle height was sufficiently tall regardless of the other geometric parameters. However, the baffle height and angle, the contact zone width, and the perforated plate affected the uniformity of the downward flow in the separation zone. Except for the baffle height, the base model used in this study showed a better uniformity of downward flow than did other models with different geometric parameters.

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet (입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.