• Title/Summary/Keyword: 부분안전계수설계법

Search Result 29, Processing Time 0.021 seconds

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

Reliability Based Design of Caisson type Quay Wall Using Partial Safety Factors (부분안전계수를 이용한 케이슨식안벽의 신뢰성설계법)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • Partial safety factors(PSFs) for Level I reliability based design of caisson type quay walls were calculated. First order reliability method(FORM) based PSFs are the functions of sensitivities of limit state function with respect to design random variables, target reliability index, characteristic values and first moment of random variables. Modified PSFs for water level and resilient water level are newly defined to keep consistency with the current design code. In the numerical example, PSFs were calculated by using a target reliability index. Seismic coefficient is defined to show extreme distribution. It was found that PSFs for seismic coefficient becomes smaller as the return period for design seismic coefficient grows longer.

Reliability Analysis and Evaluation of Partial Safety Factors for Wave Run-up (처오름에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2008
  • A reliability model of Level II AFDA is proposed to analyze the wave run-up occurring by the interaction of incident waves and sloped coastal structures. The reliability model may be satisfactorily calibrated by Level III Monte-Carlo simulation. Additionally, the partial safety factors of random variables related to wave run-up can be straightforwardly evaluated by the inverse-reliability method that use influence coefficients and uncertainties of random variables, and target probability of failure. In particular, a design equation for wave run-up is derived in the same form as that of deterministic design method so that the reliability-based design method of Level I may be applied easily. Finally, it is confirmed that results redesigned by the reliability-based design method of Level I with partial safety factors suggested in this paper are satisfactorily compared with results of CEM(2006) as well as those of Level II AFDA.

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

Estimates of Partial Safety Factors of Circumferential Through-Wall Cracked Pipes Based on Elastic-Plastic Crack Initiation Criterion (탄소성 균열개시조건에 대한 원주방향 관통균열 배관의 부분안전계수 계산)

  • Lee, Jae-Bin;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1257-1264
    • /
    • 2014
  • Efforts are presently underway for developing an optimal design methodology for GEN-IV nuclear reactors based on target failure probabilities. A typical example is the system-based code, in which the results are represented in the form of partial safety factors (PSFs). Thus, a PSF is one of the crucial elements in either component design or integrity assessment based on target failure probabilities during the operation period. In the present study, a procedure for calculating the PSF of a circumferential through-wall cracked pipe based on the elastic-plastic crack initiation criterion is established, in which the importance of each input variable is assessed. Elastic-plastic J-integrals are calculated using the GE/EPRI and reference stress methods, and the PSF values are calculated using both first- and second-order reliability methods. Moreover, the effect of statistical distributions of assessment variables on the PSF is also evaluated.

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

The Concepts and the Applications of Load and Resistance Factor Design and Partial Safety Factor Based on the Reliability Engineering (신뢰성공학에 근거한 하중-강도계수 설계법과 부분안전계수의 개념 및 적용)

  • Yoo, Yeon-Sik;Kim, Tae-Wan;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.309-314
    • /
    • 2007
  • Recently, the LRFD and the PSF based on structural reliability assessment have been applied to NPP designs in behalf of the conventional deterministic design methods. In the risk-informed structural integrity, it is especially possible to optimize design procedures considering cost, manufacturing and maintenance because the structural reliability concepts have confirmed the reliability for which a designer aims. Generally, in order to evaluate the PSF, the LRFD which is the design concept for evaluating safety factors respectively on the limit state function including load and resistance. This study certifies the concept and its applications of the PSF using the LRFD based on the structural reliability engineering.

  • PDF