• Title/Summary/Keyword: 부분분사비

Search Result 32, Processing Time 0.028 seconds

Hybrid fuel Control using Fuzzy Control system (퍼지 제어 기법을 이용한 하이브리드 연료 제어)

  • Kim, Sung-Jin;Yun, Sung-Ki;Kang, Sung-Eun;Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.67-72
    • /
    • 2008
  • 본 논문에서는 하이브리드 차량 내부 전기모터의 등판 마력값과 회전 RPM, 흡기온도 센서의 온도 변화와 공기 및 연료의 혼합비율인 공연비에 대해 퍼지 제어 기법을 적용하여 차량의 연료 소비를 제어하는 방법을 제안한다. 제안된 기법에서는 초기 가속부분에서 등판 마력간과 회전 RPM을 퍼지제어 규칙에 의해 전기모터와 엔진의 사용비율을 제어하고, 엔진이 가동될 때 각각의 공기유입량과 연료 분사량을 이용하여 공연비 수치를 구한 후, 공연비, 흡기온도, 최종 연료 보정량에 대해 설정된 피지 소속 함수와 퍼지 추론 규칙에 따라 차량 연료를 제어한다. 시뮬레이션을 통하여 실험한 결과, 제안된 퍼지 제어 기법을 이용한 엔진 및 연료 제어 방법이 퍼지기법을 적용하지 않은 제어방법보다 평균연비가 개선되어 제안된 연료 제어 방법이 효율적임을 확인하였다.

  • PDF

A Study on the Mixed-Tank and Injection Nozzle of an Automatic Spreading System of Flux using Numerical Analysis (수치해석을 이용한 플럭스 자동 도포 장치의 혼합 탱크 및 분사 노즐에 관한 연구)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.978-980
    • /
    • 2010
  • Nocolok 브레이징을 이용할 경우 저농도 플럭스와는 달리 고농도 플러스를 이용해 필요한 부분만 도포해야 한다. 일반적으로 고농도 플럭스 도포의 경우 인력을 이용한 수작업을 실시하므로 작업이 비효율적일 뿐만 아니라 플럭스 분진 날림 몇 열 등으로 인해 기피하고 있는 실정이다. 그러므로 경제적이며 효율적인 고농도 플럭스 자동 도포 장치의 개발을 통한 품질 향상 및 생산 단가 저감 등이 절실한 실정이다. 본 연구에서는 고농도 플럭스 자동 도포 시스템을 제작을 위해 수치해석을 이용한 고농도 플럭스 혼합 탱크의 혼합 효율성 및 정수압력을 이용한 유량 분배 해석을 실시하였다.

  • PDF

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.

Effect of Different Infusion Frequency of Liquid Nitrogen on Actin Filament, Mitochondria, Apoptosis and Development in Mouse 2-Cell Embryo after Freezing and Thawing (생쥐 배아 동결시 액체질소의 분사속도가 해빙후 배아의 발달, 미세섬유, 미토콘드리아 및 세포자연사에 미치는 영향)

  • 손인표;안학준;계명찬;최규완;민철기;강희규;이호준;권혁찬
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.161-173
    • /
    • 2000
  • The aim of this study was to assess the effect of the frequency of the L$N_2$ infusion on the ultrastructure, metabolism and development of the embryo after freezing and thawing by computerized cell freezer. Two-cell embryos of ICR mouse were randomly allocated into fresh (control), high-frequency freezing (group 1) and low-frequency freezing (group 2). For fresh and frozen-thawed intact 2-cell embryos, total ceil number in the blastocyst was counted by fluorescent microscope after Hoechst 33258 staining. Relative amount of $H_2O$$_2$ was measured by DCHFDA. Intracellular location and membrane potential of the mitochondria were evaluated by staining with rhodamine 123 and JC-1. The structure of actin filament was also evaluated by confocal microscope. DNA fragmentation was assessed by TUNEL method after development into blastocyst. The survival rate of intact embryo was higher in group 1 than group 2 (50.7% vs. 34.6% respectively, p<0.05). The blastocyst developmental rate was significantly low in group 2 (86.7%, 76.7% vs. 44.0% for control, group 1 and group 2 respectively, p<0.05). Total cell number in the blastocyst was also significantly lower in group 2 than control (79.5$\pm$12.9, 71.6$\pm$8.0, and 62.5$\pm$4.7 for control, group 1 and group 2 respectively, p<0.05). The relative amount of $H_2O$$_2$ was higher in group 2 than other groups (15.3$\pm$3.0, 16.6$\pm$1.6 vs. 23.4$\pm$1.8, p<0.05). After JC-1 staining, relative intensity of mitochondria with high membrane potential was significantly lower in group 2 than control and group 1 (17.2$\pm$3.8, 17.4$\pm$1.3 vs. 13.2$\pm$2.0, p<0.05). In group 2, partial deletion and aggregation of the actin filament was found. DNA fragmentation rate was also hieher for group 2 versus other groups (30.8%, 36.0% vs. 65.6%, p<0.05). The frequency of the L$N_2$ infusion is an important factor for the development of frozen-thawed mouse embryo. High-frequency infusion may prevent damages of cytoskeleton and mitochondria in the embryo probably by preventing the temperature fluctuation during dehydration phase. We speculate that the application of high-frequency infusion method in human embryo may be promising.

  • PDF

액체로켓용 터빈시스템 설계

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.163-172
    • /
    • 2002
  • The turbine system composed of a nozzle and a rotor is used to drive turbopumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of a turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e.,pressure ratio, rotational speed, required power etc.) obtained from a liquid rocket engine (L.R.E.) system design. For simplicity of a turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to the close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the close-type turbine system. A design methodology of the a turbine system has been introduced. Especially, a partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

A Study on the Effects of Droplets Characteristics of Water Mist on the Spray Density on the Floor (미분무 액적특성이 살수밀도에 미치는 영향 연구)

  • Kim, Jong-Hoon;Park, Won-Hee;Kim, Woon-Hyung;Myoung, Sang-Yup
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.120-127
    • /
    • 2021
  • Purpose: In this study, the effect of changes in the variables related to water droplets on the spray density on the floor in the analysis of the water mist fire protection system using FDS was analyzed. Method: When the spray of the water mist nozzle was analyzed in FDS, Particles Per Seconds, Particle Velocity, Size Distribution, and Spray Pattern Shape that can be set in relation to droplets were input to review the analyzed results. Result: In the analysis results, when the number of particles per second was set above a certain value, the spray density of the floor was similar. In the case of Particle Velocity, as the velocity decreases, the spray density of the central portion increases but decreases at a distance of 0.15m or more. From the analysis of the change in the size distribution function, it was found that an increase in the 𝛾 value increases the spray density of the central part, but the value at a remote location decreases. Compared to the result of applying the Gaussian distribution, the median value decreases dramatically when the uniform distribution is applied, but the value at the adjacent position increases. Conclusion: Variables related to the droplet properties of the FDS affect the spray density of the floor. Therefore, in order to increase the reliability of results before performing analyses such as fire suppression or cooling, a sufficient review of input variables is required.

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Turbopump System Performance Design for Conceptual Design of Separate Flow Cycle LRE System (개방형 액체로켓엔진시스템 개념설계를 위한 터보펌프시스템 성능설계)

  • Yang Hee-Sung;Park Byung-Hoon;Kim Won-Ho;Ju Dae-Sung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.128-133
    • /
    • 2005
  • In this study, performance design programs for components of a turbopump unit (TPU) in a Liquid Rocket Engine (LRE), that has non-cryogenic centrifugal pumps and 1-stage impulse turbine with partial admission nozzle, were developed. The programs were integrated in a TPU module by balancing the mass flow rate for pump-turbine power, and the module was inserted into the LRE system conceptual design program. The fundamental design conditions, satisfying LRE system requirements and minimum mass flow rate condition of gasgenerator, were found and compared with data from a Russian liquid rocket engine.

  • PDF