• Title/Summary/Keyword: 부드러운 경계

Search Result 35, Processing Time 0.027 seconds

Volume Mesh Parameterization for Topological Solid Sphere Models (구형 위상구조 모델에 대한 볼륨메쉬 파라메터화)

  • Kim, Jun-Ho;Lee, Yun-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.106-114
    • /
    • 2010
  • Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.

Assessments of Hydraulic Properties of Geotextiles with Fiber Composition Factors (섬유 구성인자에 의한 지오텍스타일의 수리학적 특성 평가)

  • Jeon, Han-Yong;Chung, Jin-Gyo;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • The effects of fiber composition factors of 14 geotextiles which are thickness, porosity, fiber length and diameter etc. on the transmissivity were examined and in-plane permeability of geotextiles under thickness change, transmissivity, confined load were analyzed by the constitutive equations. And the effects of laminar structure on the permittivity of laminar geotextile composites which were manufactured with fiber packing densities were assessed. Transmissivities were increased with thickness of geotextiles and in-plane permeability coefficients were increased with porosity and fiber diameter. The effects of porosity were decreased with normal stress and slightly increased with fiber length. Transmissivities were increased with fiber diameter and showed same tendensy for the same fiber length. Permittivities of laminar geotextile composites were influenced by the waterhead loss in the inner interface and the connection shape of these composites to water path was interpreted as bell mouth type or soft flux pipe type.

  • PDF

Imaging Findings of Nodular Fasciitis in Breast including Artificial Intelligence Mammography and Shear Wave Elastography: A Case Report (유방의 결절성 근막염의 인공지능 유방촬영술과 탄성초음파를 포함한 영상 소견: 증례 보고)

  • So Hyeong Park;Ji Yeon Park;Mee Joo;Jae Il Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1397-1402
    • /
    • 2023
  • Nodular fasciitis is a benign fibroblastic proliferation rarely reported in the breast. We report the case of a 55-year-old woman who presented with imaging findings that resembled a malignancy. Mammography revealed an isodense nodule with partially indistinct margin in the right breast, showing the abnormality score 75% on artificial intelligence. Ultrasonography revealed an oval hypoechoic nodule with microlobulated margin, echogenic halo, increased blood flow, and soft elasticity. After core needle biopsy and excision, nodular fasciitis was diagnosed. Although nodular fasciitis of the breast is rare, it may mimic malignancy; therefore, it should be considered as a differential diagnosis to prevent unnecessary intervention.

Segmentation of tooth using Adaptive Optimal Thresholding and B-spline Fitting in CT image slices (적응 최적 임계화와 B-spline 적합을 사용한 CT영상열내 치아 분할)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.51-61
    • /
    • 2004
  • In the dental field, the 3D tooth model in which each tooth can be manipulated individually is an essential component for the simulation of orthodontic surgery and treatment. To reconstruct such a tooth model from CT slices, we need to define the accurate boundary of each tooth from CT slices. However, the global threshold method, which is commonly used in most existing 3D reconstruction systems, is not effective for the tooth segmentation in the CT image. In tooth CT slices, some teeth touch with other teeth and some are located inside of alveolar bone whose intensity is similar to that of teeth. In this paper, we propose an image segmentation algorithm based on B-spline curve fitting to produce smooth tooth regions from such CT slices. The proposed algorithm prevents the malfitting problem of the B-spline algorithm by providing accurate initial tooth boundary for the fitting process. This paper proposes an optimal threshold scheme using the intensity and shape information passed by previous slice for the initial boundary generation and an efficient B-spline fitting method based on genetic algorithm. The test result shows that the proposed method detects contour of the individual tooth successfully and can produce a smooth and accurate 3D tooth model for the simulation of orthodontic surgery and treatment.

Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number (고 레이놀즈 수에서의 축대칭 몰수체의 거칠기에 대한 수치연구)

  • Joung, Tae-Hwan;Song, Hyung-Do;Yum, Jong-Gil;Song, Seongjin;Park, Sunho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • In this paper, the friction drag force of 3D submerged body is investigated by considering the surface roughness, the first grid height, and the Reynolds number using open CFD source code, OpenFOAM 4.0. A procedure for estimating drag components by CFD code is set up and suggested in this study. In the 3D submerged body, because of the form factor in the 3D computations, the friction resistance with the small roughness of $12{\mu}m$ obtains different result with the smooth wall. As the Reynolds number increased, the boundary layer becomes thinner and the fiction resistance tends to decrease. In the computations for the effect of y+, the friction resistance and wall shear stress are excessively predicted when the y+ value deviates from the log layer. This is presumably because the boundary layer becomes thicker and the turbulence energy is excessively predicted in the nose due to the increase in y+ value. As the roughness increases, the boundary layer becomes thicker and the turbulence kinetic energy on the surface increases. From this study, the drag estimation method, considering the roughness by numerical analysis for ships or offshore structures, can be provided by using the suggested the y+ value and surface roughness with wall function.

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

Shape Design Optimization of Electrode for Maximal Dielectrophoresis Forces (최대 유전영동력을 위한 전극의 형상 최적설계)

  • Jeong, Hong-Yeon;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • A continuum-based design sensitivity analysis(DSA) method is developed for electrostatic problems. To consider high order objective functions, we use 9-node finite element basis functions for analysis and DSA methods. As the design variables are parameterized with B-spline functions, smooth boundary variations are naturally obtained. To solve mesh entanglement problems during the optimization process, a mesh regularization scheme is employed. By minimizing the Dirichlet energy functional, mesh uniformity can be automatically achieved. In numerical examples for maximizing dielectrophoresis forces, the numerical results are compared with well-known electrode geometries and the obtained characteristics are discussed.

A study on design strategy of urban parks in Seoul: focusing on cases of DreamForest, Magok Central Park, and Yongsan Park (서울시 도시공원의 설계전략연구: 북서울 꿈의 숲, 마곡중앙공원, 용산공원 사례를 중심으로)

  • Park, Hoon;Oh, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.338-351
    • /
    • 2016
  • Park planning is done in a way to satisfy various expectations, including providing green space and offering urban space with specific and detailed strategies. This study focuses on large-scale parks that have been built since 2000 or that are going to be built. Their significance in the city was analyzed along with strategic characteristics for designing urban parks, and implications are suggested. First, the design aspects of urban parks have gradually tended towards flexibility for adapting to the diverse surrounding environments. Relating the parks to the surrounding area is realized through connection with facilities or planning to process the border area smoothly. Second, unlike in the past, urban parks are not just simply used as a resting space but play other productive and complex roles in the urban space for healing in the community. Third, six design strategies are being applied in these parks through mutually complex relations. Relations with external parties and planning inside the parks add more importance to the park for the community. Fourth, the changes of vertical time are reflected in park planning strategies and tend to form a floor plan. This is associated with growing park planning and is being realized as a major characteristic in urban park planning strategies.

Convergence of Artificial Intelligence Techniques and Domain Specific Knowledge for Generating Super-Resolution Meteorological Data (기상 자료 초해상화를 위한 인공지능 기술과 기상 전문 지식의 융합)

  • Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2021
  • Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.