• Title/Summary/Keyword: 부동침하

Search Result 9, Processing Time 0.023 seconds

불확정적 특성을 고려한 응력해석에 관한 일고찰

  • 정명채
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.10-13
    • /
    • 1993
  • 본 고에서는 불확정적 Approach에 의한 구조물 거동파악의 일례를 소개한다. 이 예에서는 극치통계와 엔트로피 최대원리를 이용하여, 부동침하를 받은 쉘구조물의 응력을 추정하는 이론을 취급한다. 부동침하는 불확정적 특성을 비교적 많이 지니고 있으며, 특히 구조물을 지지하고 있는 지반의 경우는 그 물리적 정수와 침하특성이 확정론적으로는 취급이 곤란한 경우가 많다고 생각된다. 구체적으로 극치통계법에서는 부동침하를 기초 Ring의 원주방향으로의 Fourier 계수로 가정하여, 위상각과 침하의 2승평균치가 확정치로 주어졌을 때, 진폭 Spectrum을 불확정변수로 간주하여 추정하는 방법을 소개한다. 일단 진폭 Spectrum이 구해지면 응력은 간단히 구해지므로 여기서는 Spectrum에 관해서만 언급하기로 한다.

  • PDF

Three-dimensional Modeling Seismic Analysis of Circular Water Reservoirs considering Differential Settlement Effects (부동침하 영향을 고려한 원형 배수지 구조의 3차원 모델링 지진 해석)

  • Lee, Sang-Youl;Choi, Hyung Bae;Ahn, Kwang Sik;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Three-dimensional finite element analysis of 1,300 ton stainless water reservoirs was undertaken to consider differential settlement effects of the reservoir when subjected to earthquake loads. The earthquake load for large (>1,000 ton) water reservoirs are further determined using a specification established from the Korean Standards Association. The structural behavior of water reservoirs with differential settlements can be heavily dependent on seismic loading effects. Stress and displacement distributions are induced for various load combinations, including for with and without differential settlements. From numerical examples, the induced maximum displacements of the water reservoirs largely increase with differential settlements compared to those without differential settlements.

Study on the Application of Press in Steel Pipe Pile for Restoring Building of different settlement (부동침하 건축물 복원을 위한 압입강관파일 공법 현장 적용에 관한 연구)

  • Sin, Jae-Kwon;Lee, Hee-Seok;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.85-86
    • /
    • 2015
  • Recently, As the high rise buildings have been demanded due to the rising current of land price, the permanent drainage method have been applied during and after the construction as a way to reduce the buoyancy acting on the bottoms of the foundations in the basement. This method has brought about the consolidation subsidence of the ground and turned out to be the problems of sinking hole and foundation re-settlement. The representative methods to be used for extending the life cycle of the existing building structure which is tilted by the foundation re-settlement or differential settlement of the foundation can be divided into the building structures reinforcement and soil reinforcement. The purpose of this study is to analyze and present the application example of steel pipe pile method to extend the life cycle of the six -stories building tilted in a soft ground.

  • PDF

Problem Analysis and Repair Techniques of Underground Concrete Box Structures (지하 박스 콘크리트 구조물(지하철)의 결함 원인 및 대책)

  • 변근주;오병환;신용석;송하원;원대연;남진원
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 2002
  • 지하철, 고속철도, 신공항, 공동구, 지하보도, 지하차도, 하수도, 도로 및 철도 등 의 지하구조에는 일반적으로 박스형태의 콘크리트 구조물이 건설되고 있다. 1990년 대 중반 이후 시공 및 사용중인 지하 박스 콘크리트 구조물의 균열 및 누수 등의 문제점이 사회적인 문제로 부각되기 시작하였다. 이러한 지하 박스 콘크리트 구조물에 발생할 수 있는 문제점은 크게 결함(defect), 손상(damage), 열화(deterioration)의 3가지로 구분될 수 있으며, 이들 원인은 구조물에 균열(cracking), 누수(leakage), 처짐(deflection), 부동침하(settlement) 재료분리(segregation) , 박리(delamination), 부식(corrosion), 박락(spalling)등의 현상으로 나타난다.(중략)

Structural Deterioration of Educational Buildings in Reinforced Concrete Structure : Area Seoul (철근콘크리트조 교육시설물의 열화성상에 관한 조사 연구 - 서울지역 초.중등교를 중심으로 -)

  • Kwon, Ki-Hyuk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of this study is to present basic data in order to improve the efficiency and the objectivity of diagnosing educational structures built with the reinforced concrete. For achieving the purpose, this paper, firstly, researches damage aspects of 22 public educational of facilities in Seoul, and summarizes the results of that research. Through the analysis and the evaluation of damage aspects, this paper shows the conclusions as follows; (1) Main damage to reduce structural capacities of building is the differential settlement. (2) Though the steel corrosion is occurred by several factors, the main cause is the faulty construction. (3) To prevent the damage development, a proper repair strategy is very important.

  • PDF

Structure movement-coping Waterproofing technology application for Railroad facilities (철도시설에 있어서의 구조물 거동대응형 방수기술의 적용)

  • Cho, Il-Kyu;Lee, Jong-Yong;Oh, Sang-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1964-1969
    • /
    • 2010
  • Recently, as construction market scale is getting bigger and transportation industry is developing, the underground structure construction such as subway, tunnel (excavation box) or shield tunnel structure is becoming more diverse, and its demand is gradually increasing. However, for the concrete structures constructed underground, the water leakage is occurred due to the expansion joint and construction joint, or movement, uneven settlement, excessive load and vibration during application causing cracks. Many waterproofing method and materials are used in jobsites, but areas such as underground railroad and subway that has movement and vibration at all times, the ability of waterproofing layer is declined causing repetitive water leakage due to crack, erosion and separation, which is a vicious cycle. Therefore, this study evaluates the responsiveness to a movement for adhesive/flexible waterproofing material that can cope with the vibration and the movement of the structure. Also to recommend a waterproofing technology that can cope with structure movement through examples of actual jobsite applications such as subway and tunnel where there are constant movement and vibration.

  • PDF

Strength Properties of High-Strength Concrete Piles Using an Industrial by-Product (산업부산물을 치환한 고강도 콘크리트 말뚝의 강도 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon;Hwang, Sun-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • The necessity for ground reinforcement of structures has been increasing in South Korea because buildings have encountered constructional problems such as inclined structures and collapses caused by earthquakes or differential settlement of the foundations. With regard to a ground reinforcement method, an increasing number of high-strength concrete piles have been used based on their advantages, including a wide range of penetration depth and a high load-bearing capacity. However, problems such as the destruction of a pile head during on-site placement work can occur when the pile has insufficient strength. For this reason, the strength of such piles should be managed more thoroughly. Thus, this study analyzed the strength properties of high-strength concrete piles using blast furnace slag (BFS) powder as a cement replacement, which was generated as an industrial byproduct. The analysis results indicated that the compression strength of the concrete piles increased when 10% to 20% of the cement was replaced with ground granulated blast-furnace slag (GGBS). In addition, the compression strength of the concrete piles was calculated to be 80.6 MPa when 20% of the cement was replaced with GGBS, which was greater by 5% than that of an ordinary Portland cement (OPC) specimen.

Experimental Study for Thermal Characteristics of Frozen Soil Samples (동토 시료의 열적 특성 분석을 위한 실험적 연구)

  • Sewon, Kim;Sangyeong, Park;Jongmuk, Won;YoungSeok, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • Recently, the Arctic resource development project, where undeveloped energy resources (oil, natural gas, etc.) are deposited, is actively being promoted for the perspective of diversifying the construction market and developing future energy resources. However, the frozen ground always has problems such as sinking and frost-heaving due to extreme weather. Therefore, it is necessary to analyze the thermal characteristics of the frozen soil to secure the stability of the ground structure. In this study, a series of laboratory tests were performed to evaluated the thermal characteristics of frozen soil samples in the oil sand field in Alberta, Canada. In additon, it was compared with the results of domestic(Gangwond-do) sample performed under the same conditions. As a comparison results of the experiments, it was clarified that the different frozen water content and thermal conductivity characteristics by temperature after completion of freezing could affect the frozen soil behavior.

Behavior of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반 호안의 측방유동에 따른 안벽 말뚝의 거동)

  • Shin, Eunchul;Park, Jeongjun;Ryu, Ingi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Recently, the lateral displacement of the passive piles which are installed under the revetment on the soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of ground when the revetment loading exceeds a certain limit. The lateral displacement of ground causes an excessive deformation of underground structure itself and develops lateral earth pressure against the pile foundation. The subject of study is to investigate the lateral displacement of pile foundation during the construction of container terminal at the ${\bigcirc}{\bigcirc}{\bigcirc}{\bigcirc}$ port in Incheon. The displacement of pile and the vertical settlement were measured in the field and finite element method(FEM) analysis for each construction sequence was performed using AFFIMEX(Ver 3.4). From the comparison of the results from field measurement and the finite element analysis, the settlement of the reventment has already occurred at the time of field measurements. Since then, the noticeable lateral displacement of piles and settlement were occurred during the filling of dredged soil inside the revetment dredging and reclaiming work. After completing filling, the lateral displacement and field settlement were reduced remarkably. Generally, the results from the finite element analysis show larger than those from the measurement.

  • PDF