• Title/Summary/Keyword: 부동산 가격 예측

Search Result 46, Processing Time 0.02 seconds

NFT Tokenization of Real Estate and Divisible FT Trading with Asset Portfolio Management (부동산 소유권 NFT 와 분할 판매 및 거래 시스템 설계)

  • Kim, Young-Gun;Kim, Seong-Whan;Song, Hyo Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.258-260
    • /
    • 2022
  • 대체 불가능 토큰 (NFT, non-fungible token)은 고유하고 더 이상 분할할 수 없는 특성을 가지고 있다. NFT 는 디지털 콘텐츠에 대한 소유권을 증명해 주지만 현재 1) 소유권 증명 이상의 유틸리티가 명확하지 않고, 2) 토큰이지만 유동성이 거의 없으며, 3) 가격이 예측 불가능하다. 특히, 부동산의 경우 가격이 매우 높은 특징으로 인하여 투자 진입장벽이 매우 높다. NFT 분할을 하면 유동성의 증가, 그리고 접근성 증가에 따른 커뮤니티 볼륨의 증가를 기대해 볼 수 있다. 이러한 특성을 활용하여 기존에 투자하기 어려웠던 부동산을 다양한 기술을 활용하여 쉽게 투자를 할 수 있게 된다. 또한, Black Litterman 모델을 활용하여 보다 여러 종류의 NFT 들에 대한 최적 포트폴리오를 구성할 수 있는 알고리즘을 설계하고 구현하였다.

Analysis of KOSPI·Apartment Prices in Seoul·HPPCI·CLI's Correlation and Precedence (종합주가지수·서울지역아파트가격·전국주택매매가격지수·경기선행지수의 상관관계와 선행성 분석)

  • Choi, Jeong-Il;Lee, Ok-Dong
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.89-99
    • /
    • 2014
  • Correlation of KOSPI from stock market and Apartment Prices in Seoul HPPCI from real estate market has been found from this research. Furthermore, from the comparison of those indicators' flows, certain precedence was found as well. The purpose of this research is to analyze correlation and precedence among KOSPI, Apartment price in Seoul, HPPCI and CLI. As for predicting KOSPI of stock market and real estate market, it is necessary to find out preceding indices and analyzing their progresses first. For 27 years from the January 1987 to December 2013, KOSPI has been grown by 687%, while CLI showed 443%, Apartment of Seoul showed 391%, HPPCI showed 263% of growth rate in order. As the result of correlation analysis among Apartment of Seoul, CLI, KOSPI and HPPCI, KOSPI and HPPCI showed high correlation coefficient of 0.877, and Apartment of Seoul and CLI showed that of 0.956 which is even higher. Result from the analysis, CLI shows high correlation with stock and real estate market, it is a good option to watch how CLI flows to predict stock and real estate market.

Effects of Street Centrality on the Land Prices in Seoul, South Korea (서울시 가로망 중심성의 토지가격 효과 연구)

  • Kang, Chang Deok
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.51-70
    • /
    • 2017
  • This study aimed to measure street centralities with the street width, and to analyze their effects on the residential and non-residential land prices in Seoul, South Korea. Most of the studies on urban economics and policy focusing on the urban spatial structure have evolved in terms of their perspective from monocentric to polycentric models. Recently, their themes shifted to measuring street centralities and capturing their effects on urban phenomena. To expand the existing studies and discussion, this study analyzed the street centralities with the street width, and how they changed the land prices. Multilevel regression models generated a few key findings relevant to the relationship between street centralities and land prices. While a higher detour volume and closeness to wider streets commanded premium residential land prices, higher visibility and detour volume to wider streets were associated with higher non-residential land prices. These findings suggest a robust connection between street configuration and near-land prices. Thus, the results of this study suggest a few insightful policy implications for urban planners, urban designers, real estate developers, and appraisers.

Prediction of Housing Price Index using Data Mining and Learning Techniques (데이터마이닝과 학습기법을 이용한 부동산가격지수 예측)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.47-53
    • /
    • 2021
  • With increasing interest in the 4th industrial revolution, data-driven scientific methodologies have developed. However, there are limitations of data collection in the real estate field of research. In addition, as the public becomes more knowledgeable about the real estate market, the qualitative sentiment comes to play a bigger role in the real estate market. Therefore, we propose a method to collect quantitative data that reflects sentiment using text mining and k-means algorithms, rather than the existing source data, and to predict the direction of housing index through artificial neural network learning based on the collected data. Data from 2012 to 2019 is set as the training period and 2020 as the prediction period. It is expected that this study will contribute to the utilization of scientific methods such as artificial neural networks rather than the use of the classical methodology for real estate market participants in their decision making process.

Pattern Analysis of Apartment Price Using Self-Organization Map (자기조직화지도를 통한 아파트 가격의 패턴 분석)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.27-33
    • /
    • 2021
  • With increasing interest in key areas of the 4th industrial revolution such as artificial intelligence, deep learning and big data, scientific approaches have developed in order to overcome the limitations of traditional decision-making methodologies. These scientific techniques are mainly used to predict the direction of financial products. In this study, the factors of apartment prices, which are of high social interest, were analyzed through SOM. For this analysis, we extracted the real prices of the apartments and selected a total of 16 input variables that would affect these prices. The data period was set from 1986 to 2021. As a result of examining the characteristics of the variables during the rising and faltering periods of the apartment prices, it was found that the statistical tendencies of the input variables of the rising and the faltering periods were clearly distinguishable. I hope this study will help us analyze the status of the real estate market and study future predictions through image learning.

Big Data Analysis of Financial Product Transaction Trends Using Associated Analysis (연관분석을 이용한 금융 상품 거래 동향의 빅데이터 분석)

  • Ryu, Jae Pil;Shin, Hyun-Joon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.49-57
    • /
    • 2021
  • With the advent of the era of the fourth industry, more and more scientific techniques are being used to solve decision-making problems. In particular, big data analysis technology is developing as it becomes easier to collect numerical data. Therefore, in this study, in order to overcome the limitations of qualitatively analyzing investment trends, the association of various products was analyzed using associated analysis techniques. For the experiment, two experimental periods were divided based on the COVID-19 economic crisis, and sales information from individuals, institutions, and foreign investors was collected, and related analysis algorithms were implemented through r software. As a result of the experiment, institutions and foreigners recently invested in the KOSPI and KOSDAQ markets and bought futures and products such as ETF. Individuals purchased ETN and ETF products together, which is presumed to be the result of the recent great interest in sector investment. In addition, after COVID-19, all investors tended to be passive in investing in high-risk products of futures and options. This paper is thought to be a useful reference for product sales and product design in the financial field.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market (아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구)

  • Nam, Young-Woo;Lee, Jeong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.162-170
    • /
    • 2006
  • Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.

An Analysis of Housing Price Affected by the Implementation Stage of Redevelopment Project (재개발사업 특성 및 시행단계에 따른 사업구역 내 주택가격영향에 관한 연구)

  • Lee, Jaewon;Bae, Sangyoung;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.23-33
    • /
    • 2019
  • The purpose of this study is to analyze the housing price variation within the redevelopment project district, affected by the characteristics of project and implementation stage. This study implemented the hedonic price model employing the actual transaction price with 24 dependent variables from 2006 to 2016 inside 19 redevelopment districts in Seoul. Research finding indicates that the larger ratio of the number of tenants and general distribution, the smaller ratio of rented households and the more positive effect of housing price. It is noteworthy that this study demonstrated the actual transaction price of houses located within the project districts by implementation stage. This study is expected to help the policy makers, the developers and the investors make more reliable decisions on the feasibility study related to the redevelopment project.

Application of machine learning models for estimating house price (단독주택가격 추정을 위한 기계학습 모형의 응용)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.219-233
    • /
    • 2016
  • In social science fields, statistical models are used almost exclusively for causal explanation, and explanatory modeling has been a mainstream until now. In contrast, predictive modeling has been rare in the fields. Hence, we focus on constructing the predictive non-parametric model, instead of the explanatory model. Gangnam-gu, Seoul was chosen as a study area and we collected single-family house sales data sold between 2011 and 2014. We applied non-parametric models proposed in machine learning area including generalized additive model(GAM), random forest, multivariate adaptive regression splines(MARS) and support vector machines(SVM). Models developed recently such as MARS and SVM were found to be superior in predictive power for house price estimation. Finally, spatial autocorrelation was accounted for in the non-parametric models additionally, and the result showed that their predictive power was enhanced further. We hope that this study will prompt methodology for property price estimation to be extended from traditional parametric models into non-parametric ones.

  • PDF