• Title/Summary/Keyword: 볼-스터드

Search Result 10, Processing Time 0.024 seconds

A Study on the Vision-Based Inspection System for Ball-Stud (비전을 이용한 볼-스터드 검사 시스템에 관한 연구)

  • 장영훈;권태종;한창수;문영식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.7-13
    • /
    • 1998
  • In this paper, an automatic ball-stud inspection system has been developed using the computer-aided vision system. Index table has been used to get the rapid measurement and multi-camera has been used to get the high resolution in physical system. Camera calibration was suggested to perform the reliable inspection. Image processing and data analysis algorithms for ball stud inspection system have been investigated and were performed quickly with high accuracy. As a result, inspection system of a ball stud could be used with a high resolution in real time.

  • PDF

Light Gauge Steel Frame의 해석 및 설계기법

  • 홍건호
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-74
    • /
    • 1997
  • LGSF Housing의 설계는 기존의 2*4 목조주택의 설계방법을 그대로 수용하되 박판의 강재를 사용한다는 특성에 따라 부재의 좌굴특성을 고려하는 점에서 큰 차이가 있다고 볼 수 있다. 따라서 부재의 허용내력은 부재의 형상에 따라 그 좌굴모드가 결정되고 각 모드 중 최소의 값이 부재의 최종 허용내력으로 결정된다. 이와 같은 성상을 살펴볼 때 LGSF Housing은 사용되는 자재의 단면형상 개발에 따라 그 내력의 증진을 기대할 수 있으며, 이에 대한 연구의 필요성이 크다고 볼 수 있다. 또한, 스틸하우스는 공장에서 제작된 스터드의 현장조립에 의하여 시공되므로 이들 부재간의 접합방법에 큰 영향을 받게 된다. 기존 외국의 시공사례를 살펴보면 부재간의 접합은 주로 핸드건 등에 의한 스크류를 사용한 접합방법이 이용된다. 따라서, 이러한 접합방법의 내력평가방법도 해결되어야 할 문제점으로 볼 수 있다. 이러한 제반 문제점 등이 해결된다면 LGSF Housing은 건설공기의 단축을 기할 수 있고, 시공의 신속.편리성을 도모할 수 있으며, 자원의 재활용이 가능하고 향후 벽체 패널의 공장생산 등을 통한 공업화 건축이 가능하다는 점 등을 고려할 때 국내 저층구조물의 설계에 새로운 방향을 제시할 수 있을 것으로 기대된다.

  • PDF

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

Caulking and Gap Analysis for a Ball Joint (볼 조인트의 코킹 및 유격해석)

  • Hwang, Seok-Cheol;Kim, Jong-Kyu;Seo, Sun-Min;Han, Seung-Ho;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1077-1082
    • /
    • 2011
  • Ball joint is a rotating and swiveling element that is typically the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckles by playing a role of bearing. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested response is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL 2.0 using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness. Also, the optimum design is suggested through case studies.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel (냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구)

  • Yoon, D.J.;Choi, H.J.;Lee, H.W.;Lee, G.A.;Jang, B.L.;Seo, S.L.;Choi, S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

Mechanical Properties of Stabilizer Link Using Composite Material and Metal (금속과 복합재료를 이용한 스태빌라이저 링크의 기계적 특성 평가)

  • Woo, Young-Man;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.877-882
    • /
    • 2011
  • Stabilizers are balancing equipment that can reduce the severe rolling of ships, vehicles, and aircraft. We manufactured a stabilizer link using a metal and a composite material with 25% POM-GF. We evaluated the strength of the stabilizer link via tensile, compressive, and ball-stud separation. The standard criteria were satisfied. Of four types of rod, knurled rod has the greatest strength. We improved the shape of the stabilizer-link body by a reanalysis of the injection molding.

Experimental Study on the Shear Strength of Form Tie Connector Linked by Stud Coupler (스터드 커플러로 연결된 폼타이 연결재의 전단내력에 관한 실험 연구)

  • Seo, Soo-Yeon;Kim, Seoung-Soo;Yoon, Yong-Dae;Ha, Gee-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.573-581
    • /
    • 2008
  • In general, conventional sheeting H-pile is often used as a temporary member installed upon construction of outer retaining wall at basement floor. In CBW (composite basement wall), R/C basement wall is combined with H-Pile and resists lateral soil pressure together. This paper presents an experimental results of push out shear test of CBW with stud coupler as shear connectors to combine H-Pile with R/C wall six specimens with different diameter of FT (form tie) and arrangement of shear connectors were tested to evaluate the shear capacity of the composite wall. Test results showed that shear strength increased with diameter of FT. The shear strength of shear connector in CBW could be suitably predicted by using the previous equations codified in the codes. Best correlation, especially, was found when the calculation result by the formula in AISC 360-05 was compared to test one.

Study on the High Frequency Heat Treatment Characteristics with the Distance between Coil and SCM440 Parts (고주파 열처리 코일과 피가열물 사이 간극에 따른 SCM440 강의 고주파 열처리 특성에 관한 연구)

  • Kim, Dae-Wan;Choi, Jee-Seok;Han, Chang-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • This study investigates the high-frequency heat treatment characteristics with the distance between a coil and SCM440 parts for an automobile. Global automobile makers are focusing on research to develop high-performance automobiles with improved fuel efficiency and lower emissions in accordance with consumer demand and environmental policies. However, most research on high-frequency heat treatment has been experimental, and it is very difficult to obtain high-frequency heat treatment conditions for a specific product. Therefore, all the conditions of high-frequency heat treatment except the distance between a coil and SCM440 parts were kept the same. As a result, the optimized distance between the coil and SCM440 parts was observed to be 1-2 mm. When the distance between the coil and SCM440 parts was over 3 mm, the effective case hardness depth and total case hardness depth did not satisfy the standards.