This paper proposes a new motion estimation algorithm using the temporal continuity of motion. We set up a wide global search region (GSR), which basically corresponds to the search region of FSA, and local search regions (LSRs), the positions for which are predicted by the motion vectors of the temporal neighbor blocks, are constructed in the GSR. The previous frame blocks that possibly have effects on the current block are to be the temporal neighbor blocks. Then Motion estimation is only performed in the areas made by LSRs. Experimental results show that the proposed method can maintain visual qualifies with significant reductions of complexity by reducing search regions, when compared to the conventional FSA.
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.9C
/
pp.859-868
/
2006
H.264에서 다중참조 프레임을 사용한 움직임 예측 방법은 단일 참조프레임을 이용한 움직임 예측보다 더 많은 시간적 중복성을 제거하여 부호화 효율을 높이거나 채널에러에 강인하게 부호화하기 위해 사용된다. 하지만 다중 참조 프레임을 이용하여 움직임 예측을 하는 것은 단일의 참조 프레임을 이용하는 것보다 많은 계산량을 요구하기 때문에 비디오 인코더의 복잡도를 증가시키게 된다. 본 논문에서는 다중참조 프레임을 사용한 움직임 예측을 화질 열화 없이 적은 복잡도로서 가능하게 하는 알고리즘을 제안한다. 움직임 예측 절차의 복잡도를 줄이기 위해, 제안한 알고리즘에서는 연속되는 프레임 사이에 구성된 움직임 벡터맵을 이용하여 움직임벡터를 추정한다. 제안한 방식은 추정된 움직임벡터를 작은 탐색영역에서 보정하는 방식을 적용하기 때문에 기존의 방식들에 비해 적은 복잡도가 요구된다. 제안된 방법으로 추정된 움직임벡터는 각 참조프레임들에 대해 최적의 움직임 벡터를 효과적으로 추적하기 때문에 부호화 된 영상의 화질은 전 탐색영역 움직임 예측 알고리즘을 이용한 결과와 매우 비슷하다. 제안된 방식은 세가지 단계로 구성된다. (a) 연속되는 두 개의 프레임 사이에 벡터맵을 구성한다. (b) 벡터맵에 있는 요소벡터를 이용하여 시간적 움직임 벡터를 구성한다. (c) 마지막으로, 임시 움직임 벡터를 좁은 탐색영역에서 보정한다. 컴퓨터 실험을 통해 제안된 방식의 효율성을 입증하였다. 제안된 방식과 기존의 방식들과의 비교를 위해 H.264 부호화기에서 움직임 예측 모듈에 의해 소비된 CPU 시간을 측정하였다. 컴퓨터 실험을 통해 알 수 있듯이 제안된 방식에 의해 부호화된 영상의 화질은 기존 방식과 을 통해 얻은 영상화질과 거의 같으면서 알고리즘 복잡도는 크게 줄어드는 것을 볼 수 있다.
본 논문에서는 MPEG-4 의 형상 정보 부호화에 사용되는 움직임 추정부의 고속 알고리즘을 제안한다. 형상정보 부호기에서 사용되는 움직임 추정부는 기존의 텍스처 기반의 움직임 추정부와는 다른 특성을 가지는데 형상 정보 추정기에서 사용되는 움직임 추정부는 CAE(Context-based Arithmetic Encoding)에서 사용될 컨텍스트를 만들기 위해 수행된다는 점과 움직임 벡터의 공간적 상관성, 그리고 형상정보가 이진성을 가진다는 점이 그것이다. 이러한 세가지 특성을 사용한 제안된 알고리즘은 움직임 추정부의 수행 속도를 비약적으로 향상시킨다. 실험 결과에 의하면 계산량은 최악의 경우에도 10% 이하로 떨어지는 것을 볼 수 있다. 따라서 본 논문에서 제안한 알고리즘은 실시간 소프트웨어의 구현에 적합한 알고리즘이라고 할 수 있다.
움직임을 예측하는 방법은 동영상 압축에서 중요한 부분 중 하나이다. 동영상은 움직임이 빠르거나 혹은 느린 것으로 나누어 볼 수 있고 이에 마라 움직임을 예측하는 방법을 달리 할 수 있다. 이 논문에서는 동영상의 움직임 벡터의 분포를 예상해보고 그에 따른 영역 대하여 다른 탐색 패턴을 적용하여 움직임 벡터를 예측하는 방법을 제안하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.49-51
/
2021
Versatile Video Coding(VVC)에서 동영상 압축 효율을 증가시키기 위한 다양한 화면 간 예측(inter prediction) 기법 중에 적응적 움직임 벡터 해상도(Adaptive motion vector resolution, 이하 AMVR) 기술이 채택되었다. 다만 AMVR을 위해서는 다양한 움직임 벡터 해상도를 테스트해야 하는 부호화 복잡도를 야기하였다. AMVR의 부호화 복잡도를 줄이기 위하여, 본 논문에서는 가벼운 신경망 모델 기반의 AMVR 조기 판별 기법을 제안한다. 이에 따라 불필요한 상황을 미리 조기에 인지하여 대응한다면 나머지 AMVR 과정을 생략할 수 있기에 부호화 복잡도의 향상을 볼 수 있다.
This paper proposes an adaptive motion estimation algorithm using the temporal continuity of motion. We set up a squared global search region (GSR), which basically corresponds to the search region of FSA, and non-squared adaptive local search regions (LSRs), the positions for which are predicted by the motion vectors of the temporal neighbor blocks, are constructed in the GSR. The previous frame blocks that possibly have effects on the current block are to be the temporal neighbor blocks. Because motion estimation is only performed in the areas made by LSRs, we can estimate motion more correctly and reduce processing time. Experimental results show that the proposed method can enhance visual qualities with significant reductions of complexity by reducing search regions, when compared to the conventional methods.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.229-232
/
2010
비디오 압축 기법에서 움직임 추정(Motion Estimation)은 매우 중요한 부분을 차지하는데, 그것은 움직임 추정이 화질과 인코딩 시간에 직접적으로 영향을 미치기 때문이다. 가장 기본적인 움직임 추정 기법은 전역 탐색 기법(Full Search)인데, 이는 가장 좋은 화질을 보여주긴 하지만 매우 많은 계산량이 필요하다는 단점이 있다. 따라서 좋은 화질을 유지하면서도 계산량을 낮추기 위한 많은 고속 탐색 알고리즘들이 제안되었다. 이 논문에서는 현재 프레임의 매크로블록과 이전프레임의 매크로블록간의 Sum of Absolute Difference를 이용하여 탐색영역을 변경하는 새로운 예측 방법을 제시한다. 실험결과에 따르면 우리가 제안한 알고리듬은 FS와 비슷한 PSNR을 유지하면서 속도가 크게 향상된 것을 볼 수 있었다.
동영상에서 움직이는 객체 분할 및 모션 예측을 동시에 수행할 수 있는 연구는 다양한 방법으로 시도 되어 왔다. 실제 이미지를 서로 다른 움직임이나 서로 다른 공간적인 특정 영역으로 분리 될 수 있다고 가정 한다면 복수의 객체 또는 객체의 움직임으로 표현 할 수 있다. 객체 분할 측면에서 볼 때 효율적인 분할을 위해서는 특징 입력 벡터의 선택이 중요한 변수로 작용한다. 본 연구에서는 정밀한 객체 분할을 위해 밝기, 질감(Texture) 정보와 같은 정지영상의 특징 입력 벡터와 움직임 벡터 같은 동영상의 특징 입력 벡터를 동시에 사용한다. 분리된 객체는 각각의 클래스를 구성하게 되고 이를 위한 클래스 분류기로서 Median Radial Basis 신경 회로망을 사용한다. 객체 분할과 움직임 예측을 위해서 확률적 방법을 통한 에너지 함수를 구하고 비용함수를 도입한다. 신경 회로망의 각 Basis 함수는 영상의 특정한 영역에서 활성화되며 객체의 분류를 위해 신경 회로망 출력으로 가중치의 합으로서 나타나게 된다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2001.06a
/
pp.177-180
/
2001
This paper presents a new fast motion estimation algorithm for video coding. This method classifies blocks in a frame into moving blocks and background blocks, and then searches the best-matched blocks for only moving blocks. Experimental results show the effectiveness of the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.628-630
/
2002
본 논문은 현재까지 제안된 여러 가지의 움직임 적응형 알고리즘을 비교 분석하였다. 비교 분석은 C++를 이용한 시뮬레이션을 하였고 여러 가지 이미지에 대잔 PSNR 값을 추출하였으며 에지 특성을 확인하고 그리고 시뮬레이션된 이미지를 원본과 비교 평가하였다. 그 결과 PSNR 값과 알고리즘의 성능과는 크게 낙관이 없었고, 에지 특성과 이미지간에 비교가 평가에 더 확실한 방법이었다. 알고리즘 성능은 어떤 이미지론 사용함에 따라 성능이 달라졌다. 전체적으로 볼 때 동영상에서는 $\Delta$- 형이 가장 좋은 결과가 확인되었으며 준동영상에서는 미디언 필터와 Adaptive형이 비슷한 성능을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.