• Title/Summary/Keyword: 볼트연결

Search Result 154, Processing Time 0.023 seconds

Safety Evaluation of Horizontal and Vertical Bolted Connection between PHC Piles Using Finite Element Analysis (유한요소해석을 통한 수평 및 수직볼트로 체결된 PHC 파일 연결부의 안전성 평가)

  • Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The safety evaluation of horizontal and vertical bolted connection between PHC piles is presented. The numerical analysis model is constructed using the commercial finite element program, ABAQUS, in which 3D solid element is used to model all the connection devices. The actual bolted connection is idealized by the contact and tie condition given in ABAQUS. Through the finite element analysis, the compression, tensile, bending and shear behaviors of PHC pile connection were analyzed. The safety factor based on Von-Mises and yield stress was calculated for the safety evaluation of each connection devices.

저궤도 위성 전원선 확인 시험

  • Yun, Yeong-Su;Won, Yeong-Jin;Kim, Jin-Hui
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.185.2-185.2
    • /
    • 2012
  • 저궤도 위성 비행모델 기능시험은 위성체 내부 전장품들 간의 접속 확인과 조립 및 연결상태를 확인하는 시험을 우선적으로 수행한다. 위성체의 전원선 확인 시험은 전기 전자적 조립 시험에서 가장 처음으로 수행하는 시험이다. 전력조절분배장치로부터 전장품 각각의 하드웨어로 공급되는 50볼트 주전원 또는 28볼트 부전원이 정상적으로 공급하게 되는지를 검증한다. 위성체 하니스가 설치된 후, 각각의 하드웨어에 공급되는 전원의 극성 및 연속성 시험을 수행한다. 전력조절분배장치는 태양전지판으로부터 얻어진 전력이 레귤레이터에 의해 정류된 전압을 받아 릴레이나 FET를 통하여 모든 전장품에 전원을 공급하는 주요 장비이다. 전력조절분배장치 내부나 외부 하니스 오류로부터 생길 수 있는 잘못 리드된 전원으로부터 전장품을 보호하기 위하여 하니스를 하드웨어에 연결하기 전에 우선적으로 전원선 확인 시험을 수행한다. 위성체 전원선 확인 시험은 위성체와 기능시험장비를 연결하여 시리얼 명령어를 통해 전력조절분배장치 내부의 FET 동작을 조절하며, FET 동작 상태 및 전장품에 접속되는 입력 단에서의 전압 및 전원 특성 등을 점검한다. 위성체의 주전원 50볼트 라인의 연결도 확인과 부전원 28볼트 라인의 연결도 확인 및 전력제어 유닛 내부 FET의 기능 확인을 수행하며 또한, 전력제어부 외부에 공급하는 28볼트 펄스와 15볼트 펄스를 측정 검증하는 시험을 수행한다.

  • PDF

Experimental Study on Fatigue Strength of Slip-Critical Splices using F13T High Strength Bolts (F13T급 고장력볼트를 이용한 마찰연결부 피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.623-629
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. Consequently, in this study, we estimated the fatigue strength by performing fatigue test of slip-resistant splices with slip coefficients applying the newly developed F13T high strength bolts. The fatigue test satisfied the Category B requirements with the fatigue strength of slip-resistant splices. Also we analyzed the fatigue fracture characteristics of slip-resistant splices.

Analysis on the Sliding Load for Hign-Tension Bolt Joint of the H-Beam in Pure Bending (Pure Bending이 작용하는 H-Beam의 도입축력 변화에 따른 고장력볼트 연결부 거동 분석)

  • Kim, Chun-Ho;Kim, Sang-Hoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.541-544
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads (반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.101-113
    • /
    • 2013
  • This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.

An Experimental Study on Structural Performance of HRC Composite Beam according to types of Connection Plate with Stud Bolts (HRC 복합보의 연결플레이트 보강법에 따른 구조성능실험)

  • Lee, Soo-Kueon;Yang, Jae-Guen;Song, Chang-Seok;Jang, Eun-Young;Moon, Jun-Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Recently, for the purpose of reducing work terms and improving performance for construction work, various methods in structure field were developed. This included the HRC system which is applicable to a typical structure (e.g., parking and office building). The HRC system introduced the Gerber Joint to raise structural efficiency and used connection plate to bolt HRC composite beam to H beam in the construction field. In this research, the experimental tests for six specimens, which were in the same field conditions, were conducted with several parameters such as the length and height of the connection plate and the number of stub bolts. The test result was compared with those made by current design codes for the deflection and strains of the main bar. Within the given load, the integration of concrete in beam and connection plate, welded with stud bolts, was verified.

Performance Analysis of DiffServ Networks for Providing (QoS 제공을 위한 차등서비스 망 성능분석)

  • Lim, Seog-Ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.448-451
    • /
    • 2006
  • Currently the bolt joint defect occurs from the steel bridge which is in the process of using but that investigation about each kind defect is lacking state. Research to see consequently the high strength bolt joint sliding conduct bring the model it used a structural analysis program LUSAS numerical analysis execution and a plan for Steel Box Girder Bridge copying full-size H-Beam and plan pretensioned bolt force 100%. 75%, 50% and 25% pretensioned force it acted in standard. And a hold an examination, against the sliding loads which it follows in the pretensioned force it will analysis.

  • PDF

Study on Behavior Characteristics of L-Type Flange Bolt Connection for Supporting Structures of Wind Turbines (풍력터빈 지지구조물 L형 플랜지 볼트 접합부의 거동 특성에 관한 연구)

  • Jung, Dae-Jin;Hong, Kwan-Young;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we investigated the behavior characteristics of the L-type flange bolt connection, which is used to connect upper and lower flanges having L-type ring sections, by bolts. This connection is mainly used in domestic wind turbine structures, wherein it is a vital component as any imperfection could cause the collapse of the entire structural system. Therefore, understanding the behavior characteristics of the L-type flange bolt connection is imperative. In this study, the connection's response to external force was simulated using finite element (FE) analysis and the FE model was idealized to behave as a single L-type bolt flange. The variation in the bolt tension and the L-type flange stress were analyzed to understand the behavior characteristics of the connection. Moreover, the bolt-load function models proposed by Petersen, Schmidt/Neuper and VDI 2230, theoretically expressing a relation between bolt tension and external force, were compared to evaluate the suitability of the FE analysis and analyze the significant behavior characteristics of the connection. Furthermore, the changes in the bolt-load curve due to the variations in the partial dimensions of the L-type flange bolt connection were analyzed.

An Analytical Study on the Strength Behavior of Column-Foundation Connection with High Tension Bolts (고장력 볼트 기둥-기초 연결부의 강도특성에 관한 해석적 연구)

  • Hwang, Dong A;Hwang, Won Sup;Ham, Jun Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In order to suggest a reasonable design for the circular concrete filled tube steel column-foundation connection applying high-tension bolts, Overall structural behavior and characteristics according to various variables of column-foundation connection are numerically analyzed using a commercial FE analysis program, ABAQUS. To that goal, finite element analysis is conducted on the basis of the previous study replacing anchor bolts to high-tension bolts, and the analytical results are validated by comparison with experimental results. Also, the various variables(embedded depth and grade of anchor, and height and thickness of rib) involved in behavior of the column-foundation connection are selected through analyzing the current design criteria, and the characteristics of the column-foundation connection are compared and analyzed according to the various variables. In case of the anchor bolts, Applying the high-tension bolts is more advantage and securing the embedded depth beyond 0.5D is recommendable. In case of the rib, a minimum of 0.5D for rib's height and $0.4t_b$ for rib's thickness should be secured to develop the structural performance.