• Title/Summary/Keyword: 볼스터

Search Result 6, Processing Time 0.016 seconds

A Study on Bolster Structure Design according to Second Moment of Area Change (이차단면모멘트 변화에 따른 볼스터 구조 설계 연구)

  • Kim, Jung-Nam;Son, Jong-Kyun;Park, In-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.49-54
    • /
    • 2011
  • Carbody bolster must be a strong structural member of the underframe because it is in the direct line of weight transmission. On the other hand, carbody bolster is a heavy member that occupied about 20~25% in the weight of underframe. In order to reduce the weight of carbody bolster, we study the design factors such as bending stiffness, bending strength and deformation according to the change of carbody bolster's second moment of area. And we investigate the design factors of a total of 10 species of existing rail vehicles. The results of this study can be used as practicable method in designing carbody bolster in the future.

  • PDF

Strength Evaluation for Bolster of Korean Tilting Train by Static and Fatigue Tests (정적 및 피로시험에 의한 틸팅열차용 볼스터의 구조강도평가)

  • Kim Nam-Po;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.210-218
    • /
    • 2006
  • This paper has performed static, fatigue and nondestructive test of tilting' bolster frame for Korean tilting train. From the static test, the structural safety was investigated using Goodman diagram. After the static test, the fatigue test were conducted under tilting load conditions. The fatigue test was conducted for $10\times10^6$ cycles. During the fatigue test, the nondestructive tests using magnetic particle and liquid penetrant were performed at $6\times10^6$cycle and $10\times10^6$cycle. From the crack detection tests, it was known that there was no fatigue crack in the tilting bolster.

Bogie/Carbody Interface Bolster Development for the Installation of Active Suspensions and the Modification Operation Improvement of TTX Vehicle (TTX 차량의 능동 현가장치 설치 및 수정 작업 개선을 위한 대차/차체 인터페이스 볼스터 개발)

  • Kim, Hyung-Joohn;Park, Sung-Tae;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.28-34
    • /
    • 2011
  • The carbody underframe of TTX vehicle should be modified a lot for the installation of new devices such as an active suspension system between the bogie and the carbody of TTX vehicle, because the carbody underframe is one body structure consisting of a center sill welded with a carbody bolster. Modification operation of the carbody takes a lot of time and cost, because the huge sized carbody structure should be moved to a machining apparatus and machined to guarantee the manufacture accuracy of new device installation brackets. For this reason, modification operation improvement is needed to install new devices more efficiently between the bogie and the carbody. This paper introduce the development of 'bogie/carbody interface bolster' that not only supports the carbody weight but also enables new devices to be installed more efficiently between the bogie and the carbody. This development has advantage to reduce working time and cost to install new devices such as an active suspension system between the bogie and the carbody by minimizing the modification of the carbody of TTX vehicle.

  • PDF

A Study on the Structural Analysis and Test of an Electric Car-Body (전동차 차체 구조물에 대한 구조해석 및 실험에 관한 연구)

  • 전형용;성낙원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.28-36
    • /
    • 1998
  • This investigation is the result of a structural analysis by the finite element method and static loading test for the optimal structural design of an electric railway vehicle made of stainless 301L materials. We analyzed the stress and displacement of the existing electric car-body structure for predicting the position of concentrated stress, the flow of stress, rigidity to be occurred in the car-body structure when it is subjected to the vertical load. It was exposed that the side sills and window corners around the bolsters are the weak parts of the electric car-body structure because the bolsters of the electric car-body structure were subjected to the vertical load and dynamic load to be occurred during running. The flow of stress and the cause of stress concentration in the weak zone were studied in order to prevent the concentration of stress and buckling. The rearrangement of the structure and the selection of the beam elements were also carried out for optimum design of the structure.

  • PDF

A Convergence Study through Strength Analysis of Side Bolster (사이드 볼스터의 강도 해석을 통한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.169-174
    • /
    • 2020
  • Side bolster is a part of the vehicle seat that holds the passenger's body from the side to make it more stable when the passenger is seated in the seat. In this study, the structural and fatigue analyses of the side bolsters at a car seat were carried out with two models of A and B. The heavily loaded parts, the damage by fatigue at driving a car and the difference of durability due to the structure were examined and the distributions of stress and deformation, and the fatigue lives were seen. Also, the strength and durability were examined. This study result is thought to be devoted to decrease the fatigue damage and increase the fatigue life and durability according to the design of bolster. This result is able to improve the product by applying the design of automotive side bolster practically. And it is thought to be the advantage to apply this study result to the convergence research with esthetic sense.